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ABSTRACT
In this paper, we study how to capture explicit periodicity to boost
the accuracy of deep models in univariate time series forecasting.
Recent advanced deep learning models such as recurrent neural
networks (RNNs) and transformers have reached new heights in
terms of modeling sequential data, such as natural languages, due
to their powerful expressiveness. However, real-world time series
are often more periodic than general sequential data, while recent
studies confirm that standard neural networks are not capable of
capturing the periodicity sufficiently because they have no modules
that can represent periodicity explicitly. In this paper, we alleviate
this challenge by bridging the self-attention network with time se-
ries decomposition and propose a novel framework called DeepFS.
DeepFS equips Deep models with Fourier Series to preserve the
periodicity of time series. Specifically, our model first uses self-
attention to encode temporal patterns, from which to predict the
periodic and non-periodic components for reconstructing the fore-
cast outputs. The Fourier series is injected as an inductive bias in the
periodic component. Capturing periodicity not only boosts the fore-
casting accuracy but also offers interpretable insights for real-world
time series. Extensive empirical analyses on both synthetic and real-
world datasets demonstrate the effectiveness of DeepFS. Studies
about why and when DeepFS works provide further understanding
of our model.

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
ologies → Learning latent representations.
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Figure 1: Forecasting v.s. ground-truth on the Electricity
Transformer Temperature hourly (ETTh1) dataset [33]. Val-
ues are scaled. The standard neural model fails to fully learn
the periodicity, aligned with the conclusion in [34]. We pro-
pose DeepFS to capture the periodic fluctuations for more
accurate real-world time series forecasting.

1 INTRODUCTION
Time series is a fundamental data abstract that has diverse real-
world use cases, such as product sales [5] and healthcare analyt-
ics [6]. With powerful expressiveness for sequential data, neural
forecasting models have been introduced into time series with
various attempts. For example, DeepAR [23], based on recurrent
neural networks (RNNs), outperforms the traditional statistical
models by significant margins. Inspired by the success in natu-
ral language, transformer architecture [27] has been introduced
in modeling time series data recently. [17, 33] refine the vanilla
canonical self-attention [27] by exploiting the sparsity of the atten-
tion scores. Their customized attention mechanisms lower the high
computational cost in modeling long-term time series. [32] expands
the embeddings aggregation from point-wise in above works to
series-wise. The attention scores are computed over the similar
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subsequences induced by shifting the original sequence along time.
Although remarkable progress has been made in applying these
sequential neural networks on time series, we argue that standard
deep learning models are not capable of learning the periodicity of
time series sufficiently. Fig. 1 shows such a failure example. Recent
study [34] reveals that the reason is standard neural nets do not
have any modules to capture the periodicity explicitly in their archi-
tectures. However, real-world time series typically exhibit stronger
periodicity than general sequential data such as audio or text. The
inability to learn periodic functions limits the potential of existing
neural models for more accurate time series forecasting.

Unlike deep learning, classical time series analysis methods are
commonly built on periodicity and other physical-mechanistic fac-
tors. A widely used mechanistic approach is time series decompo-
sition [11, 22]. It destructs a time series into seasonality, trend (or
trend-cycle), and irregularity, which reflect periodicity, long-term
movements and random variation, respectively. However, extrapo-
lating based on these factors alone suffers from poor forecasting
accuracy (e.g., ARMIA [11]). This is because the simple decompo-
sition is not fully capable of modeling practical time series where
the long-term sequential patterns are complicated.

Contributions: In this paper, inspired by their complemen-
tary strengths and weaknesses, we bridge the deep sequential net-
works and time series decomposition through a simple yet effective
encoder-decoder paradigm. The proposed model DeepFS preserves
temporal patterns through a self-attention mechanism, from which
a periodic inductive bias is employed to capture periodicity for
more accurate time series forecasting.

DeepFS is an end-to-end encoder-decoder framework. Composed
of the self-attention layers, the encoder converts the historical
leading series into latent representations by preserving the inter-
dependencies of each timestamp. To capture the periodicity and
trend of a sequence, we integrate the time series decomposition
in the decoder. Because only an observed sequence can be decom-
posed, we reformulate the infeasible decomposition of the forecast
output as a learning reconstruction problem, namely predicting
the periodic and non-periodic components. Specifically, DeepFS
uses the Fourier series to represent the periodic component and
transforms the leading series embeddings into the parameters of
Fourier bases. The learned Fourier series is a periodic inductive
bias that explicitly discloses the periodicity of the sequence for
better forecasting. Moreover, we use another projection network
to generate the prediction of the non-periodic components (i.e.,
trend) from the leading series embeddings. The final forecasting is
an additive combination of these periodic and non-periodic series.

A second benefit of DeepFS is interpretability. In contrast to
the lag analysis [32] or score based interpretation (e.g., salience
maps [12], attention weights [1] and feature importance [18]),
DeepFS learns the mechanistic factors explicitly, including peri-
odicity and trend. For example, we show that DeepFS extracts
24-hour and 12-hour as the periodicity of the wet bulb temperature
in Sec. 4. Such factors explicitly explain how the predictions are
generated from historical observations and offer fruitful insights
into practices such as business planning and decision making.

Empirically, we first justify the periodicity learning module on
synthetic datasets. We then present experimental results on four

real-world datasets, where DeepFS achieves accuracy gains com-
pared to the state-of-the-art transformer models. We also provide
analyses of the insightful periods learned from real-world datasets,
and study why and when DeepFS can work. We summarize the
main contributions of this work as follows:
• We propose DeepFS, a novel model that bridges self-attention
and time series decomposition for accurate forecasting.

• We propose to inject Fourier series as a learnable periodic in-
ductive bias in DeepFS to capture periodicity.

• DeepFS is also an explainable model that provides insightful
interpretations for real-world tasks.

• We conduct comprehensive experiments and analyses on both
synthetic and real-world data, demonstrating the effectiveness
of DeepFS on time series forecasting.

2 PROBLEM SETUP
In this section, we introduce the univariate time series forecasting
problem. Given a 𝐿-length observed series 𝑌 ′ = [𝑌 𝑡0−𝐿+1, ..., 𝑌 𝑡0 ] ∈
R𝐿 , where 𝑡0 is the last timestamp with observation, we aim to
predict the future 𝐻 -length sequence 𝑌 = [𝑌 𝑡0+1, ..., 𝑌 𝑡0+𝐻 ] ∈ R𝐻 .
Following the mechanistic decomposition, we hypothesize that
the future time series 𝑌 is composed of periodic series (seasonal-
ity) 𝑃 = [𝑃𝑡0+1, ..., 𝑃𝑡0+𝐻 ] ∈ R𝐻 , and non-periodic series (trend)
𝐶 = [𝐶𝑡0+1, ...,𝐶𝑡0+𝐻 ] ∈ R𝐻 . Note that both the periodic and non-
periodic series are at every timestamp in the future, and are there-
fore aligned with the forecasting horizon (with same length 𝐻 ).
Our goal is to learn a function 𝑓 (·) that maps the past observations
𝑌 ′ to the periodic series 𝑃 and non-periodic series 𝐶 separately, to
further reconstruct the future sequences 𝑌 . 𝑓 (·) is formalized as:

[𝑌 𝑡0−𝐿+1, ... , 𝑌 𝑡0 ]
𝑓 ( ·)
−−−→[𝑃𝑡0+1, ..., 𝑃𝑡0+𝐻 ], [𝐶𝑡0+1, ...,𝐶𝑡0+𝐻 ] . (1)

Then the final forecasting is an additive combination of 𝑃 and𝐶 , i.e.,
[𝑌 𝑡0+1, ... , 𝑌 𝑡0+𝐻 ] = [𝑃𝑡0+1, ..., 𝑃𝑡0+𝐻 ] + [𝐶𝑡0+1, ...,𝐶𝑡0+𝐻 ]. We con-
sider capturing the periodicity of future time series 𝑌 explicitly for
better forecasting. A real-world time series is commonly affected by
various causes, e.g., daytime-night, workday-weekend or seasons,
and thus its periodicity may consist of multiple sub-components.
For example, the product sales typically exhibit weekly and sea-
sonal repeating patterns. We further denote 𝑇 = [𝑇 1, ...,𝑇𝑆 ] ∈ R𝑆

the periodicity of time series 𝑌 where 𝑆 is the number of periodic
components. Note that the periodic series 𝑃 can be reconstructed
based on the periods 𝑇 .

3 METHODOLOGY
In this section, we introduce our framework, DeepFS. We argue that
a decent design of 𝑓 (·) in Eq. 1 should follow three principles: (1)
simple, with no verbose modules, yet effective; (2) the architecture
should be expressive to model the complicated temporal pattern
of time series; (3) the periods 𝑇 should be extracted as much as
possible; (4) the prediction should be interpretable for practitioners.

3.1 Overview of DeepFS
Following the above four principles, we depict our proposed model
DeepFS in Fig. 2. DeepFS follows the encoder-decoder paradigm,
where the encoder coverts the leading values into latent represen-
tations at each timestamp with self-attention mechanism, followed
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by a decoder that transforms these embeddings to the predicted
periodic series and the non-periodic series, which reflect periodicity
and trend, respectively. The final forecast series is reconstructed by
combining the periodic and non-periodic series, following the addi-
tive decomposition model [11]. We breakdown these two modules
in detail in the following sub-sections.

Time Series Self-Attention 

...

MLP MLP

aN. . .a1 φN. . .φ1
MLP

Fourier Series

Y′ = [Yt0−L+1, . . . , Yt0]Observed series

et0−L+1

et0

...

+

Observed horizon Forecasting horizon

Weights Phases

Final forecast
Y = [Yt0+1, . . . , Yt0+H]

Non-periodic forecast
C = [Ct0+1, . . . , Ct0+H]

Periodic forecast
P = [Pt0+1, . . . , Pt0+H]

Decoder

Encoder

Leading embeddings E

Figure 2: Overview of DeepFS. DeepFS first encodes an ob-
served leading sequence to the leading embeddings 𝐸 via
self-attention. 𝐸 is then transformed to the parameters of
Fourier series (the weights and phases of sinusoidal bases) to
predict the periodic series 𝑃 . Separately, 𝐸 is also converted to
a non-periodic series 𝐶 that represents the trend prediction.
The final time series forecast is an additive combination of
the periodic 𝑃 and non-periodic 𝐶.

3.2 Time Series Self-Attention
The RNNs and their variants [10, 21, 23, 24] process the time series
data iteratively under the Markov property assumption, i.e., the
hidden state encoded at a timestamp is only retained for the next
timestamp. Therefore, the impact of a timestamp becomes trivial if
the sequence is long, namely RNNs fail to capture long-distance de-
pendency. Hence, we use the self-attention network [27] to model
the observed leading time series as it breaks the Markov assumption
and is capable of capturing the dependencies between two times-
tamps even if they are far apart. In this work, we follow the time

series self-attention proposed in [33] for time series data, which en-
codes the value at a time step into latent embeddings via computing
its attention strengths with all timestamps in the sequence.

Leading Embeddings Initialization. For later purposes of the
attention computation, we first project each numerical value of the
leading sequence 𝑌 ′ to a 𝑑𝑢 -dimensional vectorized representation
via a projection operator 𝜙 (·) : R → R𝑑𝑢 as in [33]. The mutual at-
tention mechanism in self-attention inherently discards the relative
position contexts, yet the temporal order has proven essential for
time series [17, 33]. Therefore, we also include the positional encod-
ing 𝜏 (·) : R → R𝑑𝑢 and temporal encoding 𝜐 (·) : D → R𝑑𝑢 used
in [33], which inject the local relative orders and the global contexts
of timestamps (e.g., hour, week, month) into the sequence represen-
tations, respectively. We denote the global contexts of timestamp 𝑡
by 𝑡 ∈ D, where D is the space of global time1. The final initialized
leading embeddings 𝑢𝑡 ∈ R𝑑𝑢 at timestamp 𝑡 is then formalized as:

𝑢𝑡 = 𝜙 (𝑌 𝑡 ) + 𝜏 (𝑡) + 𝜐 (𝑡) . (2)

Leading Embeddings with Self-Attention.With the initial-
ized leading embeddings sequence 𝑈 = [𝑢𝑡0−𝐿+1, ..., 𝑢𝑡0 ], we then
compute the 𝑑𝑒 -dimensional embeddings 𝐸 = [𝑒𝑡0−𝐿+1, ..., 𝑒𝑡0 ] (𝑒𝑡 ∈
R𝑑𝑒 ) for the observed leading sequence 𝑌 ′ that capture its temporal
patterns and the inter-dependencies between timestamps via the
self-attention mechanism. The self-attention computation is con-
ducted with three matrices: query 𝑄 ∈ R𝐿×𝑑𝑞 , key 𝐾 ∈ R𝐿×𝑑𝑘 and
value𝑉 ∈ R𝐿×𝑑𝑣 , which are derived from the initialized embeddings
𝑈 via three corresponding linear transformations 𝑙𝑞 : R𝑑𝑢 → R𝑑𝑞 ,
𝑙𝑘 : R𝑑𝑢 → R𝑑𝑘 and 𝑙𝑣 : R𝑑𝑢 → R𝑑𝑣 , respectively. 𝑑𝑞, 𝑑𝑘 , 𝑑𝑣 are
the dimensions of the vectors in 𝑄 , 𝐾 and 𝑉 , where 𝑑𝑞 = 𝑑𝑘 for
the following attention scores computation. The attention based
aggregated embeddings 𝑜𝑡 ∈ R𝑑𝑣 for the leading timestamp 𝑡 is
then formalized as:

𝑜𝑡 =
∑︁
𝑖

exp(𝑞𝑡𝑘⊤𝑖 /
√︁
𝑑𝑞)∑

𝑗 exp(𝑞𝑡𝑘⊤𝑗 /
√︁
𝑑𝑞)

𝑣𝑖 , (3)

where the 𝑞𝑡 is the query vector at timestamp 𝑡 from𝑄 , and 𝑖 , 𝑗 are
the timestamp indicators of 𝐾 and𝑉 . The final leading embeddings
𝑒𝑡 is then transformed from 𝑜𝑡 with a further linear projector 𝑙𝑒 :
R𝑑𝑣 → R𝑑𝑒 . The above embeddings aggregation is under the multi-
head setting following [27].

With the time series self-attention module, the final leading em-
beddings 𝐸 = [𝑒𝑡0−𝐿+1, ..., 𝑒𝑡0 ] overcome the long distance challenge
of the recursive based temporal aggregation. Note that although we
use the attention mechanism from [33], DeepFS is flexible to accom-
modate other time series transformer methods such as [16, 17, 32].

3.3 Decomposition Based Forecasting
With the leading embeddings 𝐸, a straightforward way to model
sequential data is using another neural module to convert 𝐸 into
prediction, either a recursive structure [25] or self-attention [33].
Compared to general sequential data such as natural language or
audio, we hypothesis that real-world time series are typically more
periodic. For example, the traffic volumes exhibit daily and weekly
repeating patterns. Intuitively, capturing such periods explicitly
has the potential to boost the forecast of future series. However,
1We use “year-month-day-hour-minute-second” for D in practice.
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standard neural nets can not learn the periodicity of time series
sufficiently. This is because they do not contain any modules that
can represent the periodic functions [34].

To model the periodicity of time series, we take inspirations from
the time series decomposition [11]. It deconstructs an observed time
series into periodicity, trend and irregularity. We refer to the latter
two as non-periodic components. We propose to integrate the time
series decomposition in our model, with the mind of capturing peri-
odicity, to generate the forecast series from the leading embeddings
𝐸. However, the prerequisite of decomposition is an observed time
series, yet the forecast sequences are not available until the model
makes final prediction. Therefore, as Fig. 2 shows, we transform the
decomposition into a learning based reconstruction problem, i.e.,
instead of decomposing an observed sequence, we predict the future
periodic and non-periodic series based on the leading embeddings
𝐸, and then combine them to reconstruct the future series.

Periodic Series Prediction. A periodic sequence can be rep-
resented by the Fourier series with appropriate sinusoidal bases,
parameterized by weights, periods and phases. Therefore, we inject
the Fourier series as a periodic inductive bias in DeepFS to predict
the periodic series 𝑃 = [𝑃𝑡0+1, ..., 𝑃𝑡0+𝐻 ], which is formalized as:

𝑃 = 𝑎0 +
𝑁∑︁
𝑛=1

𝑎𝑛 sin(
2𝜋𝑛𝑡
𝑝0

+ 𝜑𝑛), (4)

where 𝑡 ∈ [𝑡0 + 1, ..., 𝑡0 +𝐻 ] (the forecast horizon). 𝑁 is the number
of sinusoidal bases, 𝑎𝑛 and 𝜑𝑛 are the weights and phases for the
𝑛-th sinusoidal basis, while 𝑎0 is a constant bias term. The periods
of the sinusoidal basis set include the basic period 𝑝0 and all its 𝑛-th
harmonics. Note that to represent an arbitrary periodic sequence,
𝑁 should be theoretically infinite, which is intractable in practice.
Instead, we set 𝑁 as a tunable parameter and use finite sinusoidal
bases to approximate the periodic sequence 𝑃 . Typically, the periods
of the sinusoidal bases set are uniform divisions of forecast horizon
𝐻 by frequency [20]. Though this set of sinusoidal bases can mimic
the periodicity, we argue it can not explicitly represent some mean-
ingful periods by which 𝐻 are not divisible, e.g., when predicting
next month’s daily electricity load (𝐻 = 30), which shows weekly
period (7). Therefore, we set the periods of the 𝑁 bases from 1 to
𝑁 . A natural choice of 𝑁 is the forecast horizon 𝐻 . Our practical
experience suggests that if using sliding window to collect training
examples, the weights of the sinusoidal bases can still be learned
well even if 𝑁 is larger than 𝐻 . Therefore, in practices we just set
𝑁 according to the specific tasks. Another benefit of choosing 𝑁
regardless of 𝐻 is that longer period may still be captured even if
the forecast horizon 𝐻 for one data sample is not enough.

As mentioned, the periodic series 𝑃 can not be derived from
post-hoc decomposition, so we turn Eq. 4 into a learnable mod-
ule in which the sinusoidal bases weights 𝑎𝑛 and 𝜑𝑛 are learned
from the leading embeddings 𝐸 with non-linear mapping func-
tions 𝑔𝑎 : R𝑑𝑒 → R𝑁 and 𝑔𝜑 : R𝑑𝑒 → R𝑁 separately, which are
instantiated by the multilayer perceptrons (MLP). This learnable
Fourier series serve as the periodic inductive bias to capture the
periodicity. Ideally, the weights 𝑎𝑛 will be learned to 0 if the se-
quence does not contain the corresponding period, otherwise some
non-trivial values. Therefore, we can infer a sequence’s periodicity
𝑇 = [𝑇 1, ...,𝑇𝑆 ] by analyzing the learned weights 𝑎𝑛 . It is worth

noting that one advantage of using a learnable Fourier series is the
explicit periodicity 𝑇 can be induced, offering human-interpretable
insights of the real-world time series compared to just a periodic
sequence 𝑃 as in [20]. We validate this design in Sec. 4.3.

Non-periodic Series Prediction. The non-periodic series 𝐶 =

[𝐶𝑡0+1, ...,𝐶𝑡0+𝐻 ] represents the overall trend of the future sequence.
Similar to the periodic series,𝐶 is also learnable in our model, which
is converted from the leading embeddings 𝐸 with a non-linear
projector𝑔𝑐 : R𝑑𝑒 → R𝐻 . A typical approach to the projection from
the latent embeddings is the recursive decoding as in seq2seq [25].
Because practical time series may have various trends, here we
avoid assuming too many priors and simply use a MLP as 𝑔𝑐 in our
decoder to generate the forecast of non-periodic series 𝐶 .

Time series reconstruction.We follow the additive time series
decomposition [11] to reconstruct the entire future time series.
Namely, the final forecast 𝑌 = [𝑌 𝑡0+1, ..., 𝑌 𝑡0+𝐻 ] is a summation of
the predicted periodic series 𝑃 = [𝑃𝑡0+1, ..., 𝑃𝑡0+𝐻 ] and non-periodic
series 𝐶 = [𝐶𝑡0+1, ...,𝐶𝑡0+𝐻 ]. We use the Mean Square Error as
the loss function 𝐿 to compare the forecast and the ground-truth
sequences, which is formalized as:

𝐿 =
1
𝐻

𝐻∑︁
ℎ=1

(𝑌 𝑡0+ℎ − 𝑌 𝑡0+ℎ𝑔 )2, (5)

where 𝑌 𝑡𝑔 is the ground-truth at timestamp 𝑡 . The loss 𝐿 is further
averaged over the entire training sequences.

Note that our framework also accommodates for the time series
in which the periodicity is insignificant. In this case, all the sinu-
soidal base weights are learned as some trivial values closed to 0,
and DeepFS becomes a standard neural network model for time
series. We justify this property empirically in Sec. 4.1.

Interpretaion. A second benefit of DeepFS is the learned pe-
riodic and trend series are human-interpretable. Periodicity and
trend are mechanistic factors that reveal how a future time series is
achieved. In particular, the learned periods 𝑇 provide practitioners
with insights into real-world time series, such as daily repeating
patterns of electrical loads. We show the learned periods for var-
ious real-world datasets in Sec. 4.2 and Sec. 4.3. Compared to the
post-hoc spectral analysis that requires the forecasting series, our
periodicity learning is performed up front, and then the learned
periods are used to boost prediction accuracy.

4 EXPERIMENTS
In this part, we present the empirical evaluation of DeepFS on uni-
variate time series forecasting. We first justify periodicity learning
on synthetic data, then compare DeepFS with diverse baselines on
four real-world datasets. We further breakdown DeepFS in various
ablation studies to understand why and when DeepFS works.

4.1 Justification on Synthetic Datasets
Since we do not know the ground-truth of either periodicity or
the trend on real-world datasets, we first justify periods and non-
periodic series learned by DeepFS on synthetic datasets.

Data Synthesis Protocol. We inject all the time series compo-
nents, i.e., periodicity, trend and randomness, described in [11] in
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the simulated data. The synthesis protocol is formalized as follows:
𝑉∑︁
𝑖=1

𝑎𝑠𝑖 sin(
2𝜋𝑡
𝑇 𝑠
𝑖

+ 𝜑𝑠𝑖 ) +
𝑊∑︁
𝑗=0

𝑤 𝑗 𝑡
𝑗 + 𝜖. (6)

The first term represents the periodicity by a combination of 𝑉
sinusoidal functions, where 𝑎𝑠

𝑖
,𝑇 𝑠

𝑖
and 𝜑𝑠

𝑖
are the simulated weight,

period and phase 𝜑𝑠
𝑖
for the 𝑖-th sine wave, respectively. The second

term is for the trend. We follow [20] to use a polynomial function
with small degree𝑊 as the trend of a time series usually does not
change severely, and𝑤 𝑗 is the weight for 𝑗-th power function. The
𝜖 stands for the randomness in time series synthesis.

In experiments, we select the sinusoidal function number 𝑉 ∈
{0, 10, 20, 30} to examine how DeepFS works under different pe-
riodicity complexity. The periods 𝑇 𝑠

𝑖
are non-repeatable sampled

from the range [1, 30]. We set the polynomial function degree𝑊
as 2. Other parameters 𝑎𝑠

𝑖
, 𝜑𝑠

𝑖
,𝑤 𝑗 and 𝜖 are all randomly generated

for each experiment. We simulate 20000 data instances and split
them into train/val/test with ratio 0.7/0.1/0.2.

Figure 3: Results on synthetic datasets. Left: predicted time
series v.s. ground-truth; Right: predicted periods with their
corresponding weights v.s. ground-truth. Rows indicate dif-
ferent numbers of periodicity components 𝑉 in simulation.
The choices of 𝑉 from top: 0, 10, 20, 30.

Results and analysis. We first report the comparison of the pre-
dicted time series and their periodicity with the simulated ground-
truth in Fig. 3. Overall, the time series predicted by DeepFS are able
to fit the simulated curves closely, while the learned periods weights
are also consistent with ground-truth. We notice DeepFS still works
even the time series is completely non-periodic (first row in Fig. 3),
suggesting the effectiveness of DeepFS on learning true periods
rather than just using the sine bases to approximate the sequence.
We further summarize the accuracy of predicted periods weights
and the non-periodic series in Table. 1, showing that DeepFS could
learn both with very low errors. These results demonstrate the

correctness of the learned periods and trend, making DeepFS trust-
worthy to capture periodicity on real-world datasets.

Table 1: Mean absolute error (MAE) of the periods weights
and non-periodic series at four periodicity complexities.

#sinusoidals𝑉 Periods weights Non-periodic series
0 0.0127 0.0315
10 0.0121 0.0325
20 0.0127 0.0582
30 0.0199 0.0555

4.2 Experiments on Real-world Datasets
We then evaluate DeepFS on four real-world datasets to study the
accuracy and interpretability of our model in practical scenarios.

Datasets. We use four real-world datasets that are collected
by [33]. We describe the datasets as follows:

• ETTh1, ETTh2, ETTm1: The ETT (Electricity Transformer
Temperature) datasets are metrics that can reflect the electric
power deployment. We use 3 ETT datasets ETTh1, ETTh2,
ETTm1 released by [33] with granularity 1-hour, 1-hour and
15-mins, respectively. We use the exactly same data split as
in [33] (train/val/test: 12/4/4 months).

• Weather: The datasets is 4 years of weather records in
United States with hourly granularity. We also use the same
split as in [33] (train/val/test: 28/10/10 months).

Baselines. We use three-category time series forecasting mod-
els as baselines, i.e., (1) statistical model ARIMA [11], (2) RNN-based
models LSTMa [2] and DeepAR [23], and (3) transformer basedmod-
els Reformer [16] and state-of-the-art transformer Informer [33].

Metrics. Because the datasets contain many zeros, we avoid the
relative metrics like the mean absolute percentage error (MAPE). In-
stead, we use the mean square error (MSE) 1
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∑𝐻
ℎ=1 |𝑌

𝑡0+ℎ −
𝑌
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𝑔 | to compare the DeepFS with baselines, where 𝐷 is the num-
ber of data samples; 𝐻 is the prediction length; 𝑡0 is the end of
leading sequence; 𝑌 𝑡 and 𝑌 𝑡𝑔 are the ground-truth and predicted
values at timestamp 𝑡 , respectively.

Implementation Details. We use Pytorch 1.8.1 to conduct our
experiments. The initial input embeddings dimension is set to 100.
For the encoder, we use 2 self-attention layers with multi-head as 4
and embeddings dimension as 100. We also use layer-normalization
and drop-out (0.05) for each self-attention layer. For the decoder,
both the MLP modules used for periodic and non-periodic series are
3 layers with hidden embeddings size as 100. We set base number 𝑁
of Fourier series as 100. We ignore the bases with period 1 and 2 be-
cause they are easily learned to be constants, causing over-fitting in
practice. For the hyperparameters, we use 0.0001 for learning rate,
100 for batch size across all datasets. We use early-stopping based
on the error on validation sets to avoid over training, but stopping
too early may prevent DeepFS from learning meaningful periods.
Therefore, we apply early-stopping after several iterations of train-
ing (20 for ETTh1, ETTh2 and Weather; 10 for ETTm1) with 5-step
patience in our experiments. We initialize all the model parameters
randomly and use Adam [15] as optimizer. All experiments are
done within an AWS g4dn.4xlarge instance.
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Table 2: Accuracy results on ETTh1, ETTh2, ETTm1 and Weather datasets. We use same settings as in [33]. The average MSE
and MAE of three runs are reported. Results of all baselines are from [33]. The best model is in boldface for each row. The
percentage increases in DeepFS compared to the second-best baseline are listed. “-” symbols refer to worse accuracy.

Dataset Prediction Length ARIMA DeepAR LSTMa Reformer Informer DeepFS Gain
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

1d (24) 0.108 0.284 0.107 0.280 0.114 0.272 0.222 0.389 0.092 0.246 0.090 0.234 2.17% 4.88%
2d (48) 0.175 0.424 0.162 0.327 0.193 0.358 0.284 0.445 0.158 0.319 0.121 0.274 23.42% 14.11%
1w (168) 0.396 0.504 0.239 0.422 0.236 0.392 1.522 1.191 0.183 0.346 0.130 0.284 28.96% 17.92%
2w (336) 0.468 0.593 0.445 0.552 0.590 0.698 1.860 1.124 0.215 0.369 0.098 0.246 54.42% 33.33%
1m (720) 0.659 0.766 0.658 0.707 0.683 0.768 2.112 1.436 0.257 0.421 0.167 0.329 35.02% 21.85%

ETTh2

1d (24) 3.554 0.445 0.098 0.263 0.155 0.307 0.263 0.437 0.093 0.240 0.120 0.270 - -
2d (48) 3.190 0.474 0.163 0.341 0.190 0.348 0.458 0.545 0.155 0.314 0.146 0.300 5.81% 4.46%
1w (168) 2.800 0.595 0.255 0.414 0.385 0.514 1.029 0.879 0.232 0.389 0.191 0.347 17.67% 10.69%
2w (336) 2.753 0.738 0.604 0.607 0.558 0.606 1.668 1.228 0.263 0.417 0.241 0.391 8.37% 6.24%
1m (720) 2.878 1.044 0.429 0.580 0.640 0.681 2.030 1.721 0.277 0.431 0.281 0.425 - 1.39%

ETTm1

6h (24) 0.090 0.206 0.091 0.243 0.121 0.233 0.095 0.228 0.030 0.137 0.021 0.112 30.00% 18.25%
12h (48) 0.179 0.306 0.219 0.362 0.305 0.411 0.249 0.390 0.066 0.194 0.035 0.146 46.97% 24.74%
1d (96) 0.272 0.399 0.364 0.496 0.287 0.420 0.920 0.767 0.187 0.384 0.187 0.345 0.00% 10.16%
3d (288) 0.462 0.558 0.948 0.795 0.524 0.584 1.108 1.245 0.401 0.554 0.219 0.386 45.39% 30.32%
1w (672) 0.639 0.697 2.437 1.352 1.064 0.873 1.793 1.528 0.512 0.644 0.248 0.416 51.56% 35.40%

Weather

1d (24) 0.219 0.355 0.128 0.274 0.131 0.254 0.231 0.401 0.117 0.251 0.102 0.231 12.82% 8.09%
2d (48) 0.273 0.409 0.203 0.353 0.190 0.334 0.328 0.423 0.178 0.318 0.139 0.272 21.91% 14.47%
1w (168) 0.503 0.599 0.293 0.451 0.341 0.448 0.654 0.634 0.266 0.398 0.216 0.350 18.80% 12.06%
2w (336) 0.728 0.730 0.585 0.644 0.456 0.554 1.792 1.093 0.297 0.416 0.280 0.413 5.72% 0.75%
1m (720) 1.062 0.943 0.499 0.596 0.866 0.809 2.087 1.534 0.359 0.466 0.394 0.488 - -

Figure 4: Results on real-world datasets. Left: full predicted
time series v.s. ground-truth; Right: predicted trend. Data
is scaled. Middle: predicted periods with weights. Striking
predicted periods are highlighted with red annotation. From
top: ETTh1, ETTh2, ETTm1, Weather.

Qualitative results and analysis. We show the forecast curves,
the predicted periods and non-periodic series of all datasets in Fig. 4.
The learned periodicity for ETTh1 (24-hour, 12-hour), ETTh2 (24-
hour, 12-hour), ETTm1 (96-quarter hour), and Weather (24-hour,

12-hour) are all in the daily-wise, which are aligned with human’s
practical experience of electricity usage and the nature of weather
evolution. The learned non-periodic series are also consistent with
the overall movements of the ground-truths in general (e.g., a clear
increase for ETTm1). Both the prediction of periods and trend
contribute to and explain the observation that our predicted time
series are able to capture the complicated fluctuations of the ground-
truths (left column in Fig. 4), indicating the effectiveness of DeepFS
on learning periodicity for better forecasting.

Quantitative results and analysis. We report the forecasting
accuracy of DeepFS and baselines in Table. 2. DeepFS outperforms
all baselines on 17 out of 20 experiments. Specifically, compared
to the state-of-the-art transformer based model Informer, DeepFS
improves average 18.4% on MSE and 12.6% on MAE, suggesting
the effectiveness of injecting periodic inductive bias into neural
networks, as it captures the periodic-trend nature of time series.
We notice that Informer is still strong in three cases especially in
ETTh2 and Weather datasets. We speculate that the self-attention
in Informer’s decoder somehow captures the temporal patterns
when the periodicity is dominant and clear, such as the ETTh2 and
Weather datasets as shown in Fig. 4. However, for more complicated
periodic patterns like ETTh1 and ETTm1, our model enjoys non-
trivial accuracy gains, especially for long prediction length. We see
this as the benefit of explicitly modeling periodicity.

4.3 Why Does DeepFS Work?
We further conduct detailed analyses of DeepFS from five aspects
to study the reasons why our model can achieve better accuracy.

Ablation study on model architecture. Our intuition is that
both the Fourier series and the non-periodic MLP layers contribute
to prediction and are therefore indispensable. To verify this, we com-
pare DeepFS with two variants: only with Fourier series (DeepFS
(P)) and only with non-periodic MLP (DeepFS (NP)). We report the
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Table 3: Accuracy comparison between DeepFS and variants.
DeepFS (P) removes the non-periodic MLP, and DeepFS (NP)
removes the Fourier series. The means and standard devia-
tions of five runs are reported. (Numbers) under datasets are
prediction length. The best model is in boldface for each row.

Datasets Metrics DeepFS (P) DeepFS (NP) DeepFS

ETTh1 MSE 1.990±0.002 0.380±0.175 0.108±0.007
(336) MAE 1.363±0.001 0.529±0.135 0.262±0.008

ETTh2 MSE 1.554±0.002 0.264±0.037 0.225±0.014
(336) MAE 1.118±0.001 0.416±0.033 0.376±0.013

ETTm1 MSE 1.917±0.001 0.191±0.014 0.192±0.008
(288) MAE 1.341±0.000 0.367±0.017 0.360±0.011

Weather MSE 0.989±0.002 0.316±0.012 0.284±0.009
(336) MAE 0.803±0.001 0.439±0.011 0.420±0.008

accuracy in Table. 3 and draw the predicted series in Fig. 5. We find
removing either component leads to a non-trivial accuracy drop,
justifying their necessity. Fig. 5 shows the Fourier series alone is
able to capture the fluctuations, further demonstrating the effec-
tiveness of the learnable periodic inductive bias. We notice DeepFS
(NP) just learns almost flat lines. We infer it is merely an attempt
to reduce the overall loss (e.g., the good numerical error on ETTm1
in Table. 3) rather than preserving the inherent periodic patterns
of time series. The results are aligned with the observations in [34]
that standard neural networks can not fully learn periodicity.

Figure 5: Forecasting of DeepFS, DeepFS (NP), DeepFS (P) v.s.
ground-truth on four datasets. From top left: ETTh1, ETTh2,
ETTm1, Weather. (Numbers) in titles are prediction lengths.
Values are scaled.

Ablation study on sinusoidal bases. The sinusoidal bases are
the “silver bullet” to learn periodicity of time series. To measure
the impact of the number of sinusoidal bases 𝑁 , we perform ex-
periments on ETTh2 dataset with 9 different sine bases numbers
𝑁 ∈ {20, 40, 60, 80, 100, 120, 140, 160, 180}. We set the prediction
length as 2-week (336 timestamps) and report the accuracy (in
MSE and MAE) and predicted periods in Fig. 6. The optimal basis

number 𝑁 in this setting is 40. This is probably because 40 bases
(with periods until 40) include the principal periods of ETTh2, i.e.,
24-hour and 12-hour. We also observe a rapid drop in accuracy
when the bases number is greater than 100, especially 160 and 180.
Combining the predicted periods weights, we think the reason is
the model fails to learn correct weights for the low-frequency bases
(large periods). We infer that an optimal sinusoidal bases number
choice should follow two rules: a) must include all principal peri-
odic components, b) when a) holds, use a small number to reduce
the difficulty in learning weighting for low-frequency bases. We
further explore the failure reason in Sec. 4.4.

Figure 6: Accuracy and predicted periods weights on ETTh2
dataset with different sinusoidal basis numbers. Solid curves
are average of MSE and MAE, ribbons indicate standard
derivation. Striking predicted periods are highlighted with
red annotation. Magenta rectangles circle the failures of
learning sinusoidal bases weights.

Figure 7: Accuracy and predicted periods on ETTh2 dataset
with different leading observed sequence lengths. Solid
curves are average of MSE and MAE, ribbons indicate stan-
dard derivation. Striking predicted periods are highlighted
with red annotation.

Ablation study on leading series length. Our model learns
the periodic and non-periodic series from the embeddings of lead-
ing sequence. To understand how the length of leading sequence
𝐿 affect DeepFS, we conduct experiments with 6 different lengths
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𝐿 ∈ {48, 96, 168, 336, 540, 720} on ETTh2 dataset, and report the
accuracy and predicted periods in Fig 7. The error first decreases
quickly with longer leading sequences, reaches the minimum at
𝐿 of 96, and then gets worse. However, we note that the learned
periods are reasonable regardless of leading series lengths. There-
fore, we speculate that the non-periodic series patterns are not fully
learned with a short leading sequence (pre-96), but the encoder
may suffer from the cumbrous attention computation to predict the
non-periodic series if the sequence is too long (e.g., post-540).

Figure 8: Predicted periods with corresponding weights on
daily-granularity datasets. Striking predicted periods are
highlighted with red annotation. From left: US COVID-19
death, freeway occupancy rates (traffic), electricity load.

Periodicity generalization. Many real-world applications ex-
hibit various periods, e.g., weekly. We further use DeepFS to learn
periods for three additional datasets: JHU CSSE COVID-19 Data [8],
freeway occupancy rates (traffic)2, and electricity load 3. We pre-
process all datasets to daily granularity and report the predicted
periods in Fig. 8. All three datasets show weekly periods, which are
consistent with the practical experience. (We believe the weekly
period of COIVD-19 patients is primarily due to the fact that the
cases in many states are not fully updated over the weekend.) These
results confirm that DeepFS is able to capture various granularity
periods, indicating the potential use of DeepFS in real scenarios.

Day-Clock
     e.g., Su-9 
(Sunday-9am)

Figure 9: 2D t-SNE projections of leading embeddings 𝐸 from
ETTh2 dataset. Colors are coded by days (Monday to Sunday).
"Day-clock" refers to an hour of the day, e.g., “Su-9” is Sunday
9AM. Adjacent times of the same day are connected by lines.

Leading embeddings visualization. To study whether the
leading embeddings 𝐸 are informative for the forecasting, we use
t-sne [26] to project the learned leading embeddings 𝐸 into two-
dimensional space in Fig. 9. The 2-D embeddings points exhibit two
2https://pems.dot.ca.gov/
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

interesting patterns: (1) continuous from beginning to end of the
week (left to right) while parts of weekends are dispersed, and (2)
clustered at night-times (bottom left) and during day times (center)
separately, with a looping shape for each day. These patterns reflect
the periods (e.g., 24-hour) of the leading sequences, reinforcing our
conclusion that DeepFS well captures the periodicity.

4.4 When Will DeepFS Work?
To further understand when it is appropriate to employ DeepFS for
real-world applications, we explore why learning low-frequency
sinusoidal bases fails in Sec. 4.3. We test the failure sinusoidal base
number 𝑁 = 180 on synthetic data. We compare the predicted
periods with different numbers of synthetic data samples in Fig. 10.
We find that enough data samples are essential to learning correct
weights for low-frequency sinusoidal bases, and thus for low fore-
cast errors. With a fixed length of the leading series, more data
samples expand the entire horizon of the observed sequence, which
probably explains the success of learning weight for a large period
sinusoidal basis. We note that DeepFS may not work for time series
with large periods but the available data for training is not sufficient.
We leave this “few-shot” problem to future work.

Figure 10: The predicted v.s. ground-truth periods weights
with different numbers of synthetic data samples. The pe-
riodicity components number 𝑉 = 30 and sinusoidal bases
number 𝑁 = 180 for all experiments. The MSE of each exper-
iment is reported. Magenta rectangles circle the failures
of learning sinusoidal bases weights.

5 RELATEDWORK
We introduce two lines of related works: general time series fore-
casting and time series interpretation.

5.1 Time Series Forecasting
Time series forecasting is a ubiquitous problem that has various
real-world applications. Traditional forecasting methods focus on
modeling the mechanistic factors that cause time series to move.
For example, time series decomposition separates the deterministic
components of time series from the stochastic parts for extrapola-
tion [7]. The seasonality (i.e., periodicity) and trend are the common
factors that are extracted in many decomposition based methods
such as ARIMA [22] and the Holt-Winters method [14]. For specific

https://pems.dot.ca.gov/
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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time series tasks, domain knowledge is also used as the mechanistic
factors. For example, Wang et al. [29] study the citation counts dis-
tribution along time and propose models that preserve the citation
mechanism as parameters to predict future citation behaviours. The
mechanistic factors, either extracted from time series or summa-
rized by domain experts, disclose the evolution of time series and
provide intuitive interpretations for how the model makes predic-
tions. However, the traditional mechanistic factors based methods
suffer from the poor forecasting accuracy due to their weakness in
learning enough insights from the complicated temporal patterns.

Recently, neural networks have been widely applied to predict
time series because of their powerful strength to model sequential
information. For example, recurrent neural networks (RNNs) based
models DeepAR [23] encodes the value at each timestamp with
previous hidden representations iteratively, from which to predict
the next value by a probabilistic sampler. Convolution based neural
networks, such as temporal convolutional network (TCN) [4], are
also adapted to time series forecasting, especially for the multivari-
ate setting in which the convolutional layers are used to model the
correlations among variables [28]. Both the recurrent and convolu-
tional layers are limited to modeling local time horizons. In contrast,
recent transformer based approaches compute the dependencies
for every pair of timestamps via the self-attention mechanism [27],
which overcomes the long-range challenge of RNNs models. To
improve the efficiency for practical usage, Zhou et al. [33] and Li et
al. [17] exploit the sparsity of self-attention scores and select a sub-
set of pairs to reduce the computational complexity. To model the
periodic pattern of time series, Zonoozi et al [35] use periodic rep-
resentations to enhance spatial-temporal forecasting. Fan et al [9]
and Oreshkin et al [20] equip the periodic series as intermediate
modules in their deep frameworks. Deep learning approaches have
achieved significant progress in time series forecasting, but they
have been proved to be unable to fully learn periodicity from time
series [34]. In this work, we propose to directly inject the Fourier
series as a periodic inductive bias into neural models to capture
periodicity explicitly to boost the forecasting accuracy.

5.2 Time Series Interpretation
Another line of related works is the interpretability of time series,
which is essential for practitioners to understand how models make
predictions and get insights of the real-world task. Scores are a
common tool for measuring how a model uses data. Many existing
works rely on various scores for explanations. For example, Ismail
et al. [12] propose a plug-in that first computes the salience scores
of timestamps and features separately, and then multiplies them
as the measure of importance, which improves the accuracy of
locating highly correlated inputs on salience maps. Alaa et al. [1]
integrate the state transitions with attention modules to predict the
disease progression over time where the attention scores are inter-
preted as the dependency of the disease recovery and the medical
contexts. To directly measure the importance of each metadata, Lim
et al. [18] use weighted combination of metadata during training,
the learned weights reflect the contribution of every feature. Wang
et al. [30] use the partial derivatives to reflect the effects of both the
input sequence and the intermediate layers. However, such learned
inherent scores are difficult to examine [19] and sometimes even

suspicious [3, 13, 31]. Instead, we propose to use the mechanistic
factors (i.e., periodicity and trend) that reveal the physical temporal
mechanisms to explain the prediction of time series.

6 CONCLUSION
In this paper, we study univariate time series forecasting by explic-
itly capturing the periodicity. We propose DeepFS, a novel model
that combines self-attention and time series decomposition to en-
hance the periods preserving of neural networks.We achieve this by
injecting Fourier series as an periodic inductive bias in our model.
Extensive experiments demonstrate that DeepFS achieves better
forecasting accuracy. However, DeepFS fails when training data is
rare. Future work could study the transferablity of DeepFS for such
few-shot scenario. How to learn periodicity for multi-variate time
series is also an interesting and useful direction.
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