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ABSTRACT
In this paper, we study the causal effects estimation problem on

networked observational data. We theoretically prove that standard

graph machine learning (ML) models, e.g., graph neural networks

(GNNs), fail in estimating the causal effects on networks. We show

that graph ML models exhibit two distribution mismatches of their

objective functions compared to causal effects estimation, leading

to the failure of traditional ML models. Motivated by this, we first

formulate the networked causal effects estimation as a data-driven

multi-task learning problem, and then propose a novel framework

NetEst to conduct causal inference in the network setting. NetEst

uses GNNs to learn representations for confounders, which are

from both a unit’s own characteristics and the network effects. The

embeddings are then used to sufficiently bridge the distribution

gaps via adversarial learning and estimate the observed outcomes

simultaneously. Extensive experimental studies on two real-world

networks with semi-synthetic data demonstrate the effectiveness of

NetEst. We also provide analyses on why and when NetEst works.
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1 INTRODUCTION
Causal inference (also formalized as counterfactual reasoning [9,

33]) has attracted increasing interests on networked scenarios, such

as social networks [30, 31], online advertisements [29], and vac-

cine distribution [4]. Randomized controlled trials (RCTs) are still

the “gold standard” on networked data [11, 45]. However, RCTs

are usually time-consuming, highly-costly and even not doable,

which is especially true in the context of networks. Therefore, es-

timating the causal effects from networked observational data is
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an important yet challenging problem and the focus of this paper.

We use vaccine distribution as our motivating example throughout

this paper. Given the observed vaccine assignments (i.e., treatment)

and the immunity level [27] (i.e., outcome) of a social community

(i.e., network), we aim to answer the counterfactual questions like

“would the community immunity level be stronger had a different

group of people been vaccinated”?

The difficulties of causal inference on networked data are due

to the dependency between units in a network and the need of in-

ductive inference raised by real-world applications. First, compared

with traditional independent setting [19, 37, 43, 44], the non-i.i.d. na-

ture of networks introduces two-fold challenges to causal inference,

i.e., homophily [28] and interference [18]. Homophily describes the

phenomenon that similar units in networks tend to form social ties,

which brings in new confounders (factors that affect both treatment

and potential outcome) for causal effects in addition to the units’

own features (a.k.a., characteristics). Interference refers to the fact

that the potential outcome of a unit is caused by not only their own

but the neighbors’ treatments on networks, e.g., getting vaccines

protects both a person and their social contacts. In other words, the

traditional SUTVA [35] assumption that one’s potential outcome is

stable regardless of the treatment assignments of others is no longer

valid. Second, from the empirical view, many real-world problems

require to predict the causal effects on a new network without any

observed outcomes (known as “out-of-sample” estimation [37], or

“inductive” prediction [15] in machine learning), e.g., finding out

the best initial vaccine plan for a community. However, transferring

the estimation from the observed networks to a new network is

non-trivial because two network structures could be quite distinct.

To estimate causal effects on networked data, Forastiere et al. [7]
extend the “no unobserved confounders” assumption to networks

with interference, and propose a networked propensity score based

method to infer the causal effects. Arbour et al. [2] find out the ad-

justment variables on networks and estimate the treatment effects

via back-door criterion [33]. Despite the success on networks with

observed outcomes (known as “within-sample” estimation [37]),

these methods are not able to generalize the effects to a new net-

work where we do not have any outcomes observed. Recent works

propose to use network embeddings to capture unobserved con-

founders encoded in network structure [6, 12, 14, 25, 39]. However,

these works still follow the STUVA assumption and ignore the

interference, which induces estimation bias of real-world networks.

Given that networked observational data contains features, treat-

ments, observed outcomes and the network structure, a natural idea

is to train a standard graph machine learning model, e.g., graph

neural networks (GNNs) [23, 40–42], on the observed data and then
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to predict the counterfactual outcomes for causal effects estima-

tion. However, we theoretically demonstrate that such standard

graph machine learning models fail in inferring the causal effects

on networks, because there are two distribution mismatches be-

tween their objective functions (details in Sec. 3.1). In other words,

standard graph machine learning models are solving a different

optimization goal from estimating the causal effects on networks.

To fill this gap, we further find that it is sufficient to enforce the two

mismatched distributions to be uniform. These insights motivate

us to propose a novel framework NetEst, which formulates the

Networked causal effects Estimation into a data-driven multi-task

paradigm with two optimization goals: predicting the potential out-

comes and bridging the distribution gaps between standard graph

machine learning and networked causal inference. To facilitate this,

NetEst first uses GNNs to encode the confounders that are from both

a unit’s own and neighbors’ features into latent representations.

Together with both a unit’s own and their neighbors’ treatments,

these embeddings are then used to estimate the potential outcomes

via an estimator. Meanwhile, NetEst uses two adversarial learning

modules to force the mismatched distributions to follow uniform

distributions based on the embeddings. NetEst is applicable to both

the “out-of-sample” [37] and the traditional “within-sample” [19]

estimation on networked data.

Ourmain contributions are summarized as follows: First, we
theoretically prove that standard graph machine learning models

can not estimate causal effects on networks due to the distribution

mismatches between their objective functions. Second, we formalize

the networked causal effects estimation to a multi-task learning

problem and propose a novel framework NetEst that solves the

distribution gaps and alleviates the challenges induced by the nature

of neworked data. Third, we conduct extensive experiments on two

datasets, demonstrating the effectiveness of NetEst and present

empirical analyses of why and when NetEst works.

2 PROBLEM SETUP
We follow Arbour et al. [2] to set up the causal effects estimation

on networks. We first discuss the causal graph of networked data in

the presence of homophily and interference. Then we present the

definition of causal effects on networks and discuss its identification.

We list all the notations used in this paper in Table 1.

2.1 Causal Graph on Networks
Causal graph is a directed acyclic graph (DAG) that describes the

causal relations among variables [33]. Without loss of generality,

we still use vaccination as our motivating example to depict a plau-

sible causal graph on networks in Fig. 1. The social structure of a

three-unit community is described on the left, and right part shows

the causal relations of their features, treatments and potential out-

comes. In practice, a unit’s features (e.g., health condition) cause

both their (1) decisions to get vaccinated (treatment) and (2) immu-

nity to a virus (potential outcome), namely a unit’s features contain

confounders between treatment and potential outcome (indicated

by red edges in Fig. 1). In addition, a unit’s features may also affect

the neighbors’ treatments and potential outcomes as they may in-

fluence each other. For example, a person with a weakened immune

system may increase their risk of infection, prompting their family

Table 1: Notations used in this paper.

Symbol Description

𝐺 , 𝐴,𝑋 graph, adjacency matrix and feature matrix

𝑡𝑖 , 𝑥𝑖 , 𝑦𝑖 treatment, feature and potential outcome of unit 𝑖

{𝑥 𝑗 } 𝑗∈N𝑖
features of 𝑖’s neighbors in network

𝑇 , 𝑌 treatment vector, potential outcome vector of all users

{𝑡 𝑗 } 𝑗∈N𝑖
treatments of 𝑖’s neighbors in network

{𝑥 𝑗 } 𝑗∈−N𝑖
treatments of 𝑖’s non-neighbors in network

𝑍 summary function of neighbors’ treatments

𝑧𝑖 peer exposure of unit 𝑖

𝑌 𝑖
𝑡𝑖 ,𝑧𝑖

observed outcome of unit 𝑖 under 𝑡𝑖 and 𝑧𝑖

𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 𝑡, 𝑧𝑖 = 𝑧) potential outcome of unit 𝑖 under 𝑡𝑖 and 𝑧𝑖

N𝑖 , 𝑁𝑖 𝑖’s neighbors set, and size

𝜏 , 𝜏 treatment effects, estimate of treatment effects

𝜙 , 𝑠𝑖 representation function, representation of unit 𝑖

𝑚 outcome estimation function from representation

𝑓 outcome estimation function from feature

𝑑𝑡 , 𝑑𝑧 discriminators

J loss function

21

3

x1 x2 x3

t1 t2 t3

y2

Figure 1: Causal graph of a network with three nodes. Left:
the network connection topology. Right: causal graph. x, t, y
are features, treatments and potential outcome respectively.
A red edge shows confounders from a unit’s own features,
a blue edge means confounders brought by network, an or-
ange edge represents the causal effects between a node’s own
treatment and potential outcome, and a green edge shows the
peer effects of treatment. Only 𝑦2 is shown for simplicity. We
assume that peer effects occur only between 1-hop neighbors
and that there are no unmeasured confounders.

members to get vaccinated. In other words, networks introduce new

confounders between the treatment and potential outcome (blue

edges in Fig. 1). Different from the independent setting, treatment

of a unit spills over to their neighbors. For example, getting vacci-

nation protects not only oneself, but others in the community (i.e.,

herd immunity [1]). This “peer effect” reflects the interference na-

ture of the network (marked by green edges in Fig. 1). Following [2],

we assume that network confounders and the peer effect only exist

among 1-hop neighbors. We further assume that all treatments are

carried out at the same time without any order. In other words

treatments will not affect each other. The readers can refer to [32]

for other plausible causal graphs on networked data.
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2.2 Causal Inference on Networked Data
Formally, given a network 𝐺 = ⟨𝐴,𝑋 ⟩, in which 𝐴 ∈ R𝑉×𝑉

is

the adjacency matrix where V is the number of units (nodes) in

𝐺 ; 𝑋 ∈ R𝑉×𝑘
is the units’ features matrix and 𝑘 is the feature

dimension. We use 𝑥𝑖 ∈ R𝑘
to represent the feature of 𝑖-th node.

We denote 𝑇 = [𝑡1, ..., 𝑡𝑉 ] as the treatment vector of all 𝑉 units

where 𝑡𝑖 ∈ {0, 1} is the treatment of 𝑖-th unit. Following many

existing works [13, 19, 37, 39], we assume that 𝑡𝑖 is binary (e.g.,

𝑡𝑖 = 1 means getting vaccinated while 0 means not). We then denote

the potential outcome vector 𝑌 = [𝑦1, ..., 𝑦𝑉 ] where 𝑦𝑖 ∈ R is the

potential outcome of unit 𝑖 . We further assume 𝑦𝑖 is continuous

(e.g., a higher value means a stronger immunity). Following [2], we

can define the causal effects 𝜏 (𝑋 ) on the whole network 𝐺 as the

difference in the potential outcomes under two treatments vectors

𝑇 ′
and 𝑇 ′′

, which is formalized as:

𝜏 (𝑋 ) := E
[
𝑌 |𝑑𝑜 (𝑇 ′) − 𝑌 |𝑑𝑜 (𝑇 ′′)

��𝑋,𝐴], (1)

where the do-calculus [33] represents an intervention on treatments.

In our motivating example, 𝑇 ′
and 𝑇 ′′

can be two vaccine distri-

bution strategies. With Eq. (1), we can answer causal questions on

networks, such as comparing the impacts of two vaccine plans.

To measure the overall effects 𝜏 (𝑋 ) on the entire network, we

need to estimate the treatment effects 𝜏 (𝑥𝑖 ) for every unit, namely

the individual treatment effects (ITE). From the individual view,

a unit’s potential outcome 𝑦𝑖 is caused by their own feature 𝑥𝑖 ,

treatment 𝑡𝑖 , neighbors’ features {𝑥 𝑗 } 𝑗 ∈N𝑖
∈ R𝑁𝑖×𝑘

and treatments

{𝑡 𝑗 } 𝑗 ∈N𝑖
∈ {0, 1}𝑁𝑖

as in Fig. 1, where 𝑁𝑖 is the number of 1-hop

neighbors of unit 𝑖 . To represent the interference of neighbors’

treatments {𝑡 𝑗 } 𝑗 ∈N𝑖
, following [7], we define a summary function

𝑍 : 2
𝑇 → [0, 1] that reduces a set of treatments in 2

𝑇
into a scalar.

We set 𝑧𝑖 = 𝑍 ({𝑡 𝑗 } 𝑗 ∈N𝑖
), where 𝑧𝑖 is defined as the peer exposure

of unit 𝑖 to neighbors’ treatments {𝑡 𝑗 } 𝑗 ∈N𝑖
. In this paper, we define

𝑍 as a function to calculate the percentage of treated neighbors,

i.e., 𝑧𝑖 =
∑

𝑗 ∈N𝑖
𝑡 𝑗/|𝑁𝑖 |, and thus 𝑧𝑖 means the ratio of 𝑖’s neighbors

whose treatments are 1. Therefore, the range of 𝑧𝑖 is [0, 1]. To
highlight these causes, we reformulate unit 𝑖’s potential outcome

𝑦𝑖 as 𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 𝑡, 𝑧𝑖 = 𝑧), indicating the potential outcome under

the treatment 𝑡 and the peer exposure 𝑧. Then individual treatment

effects (ITE) 𝜏 (𝑥𝑖 ) of unit 𝑖 can be formalized as:

𝜏 (𝑥𝑖 ) := E
[
𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 𝑡 ′, 𝑧𝑖 = 𝑧′)−𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 𝑡 ′′, 𝑧𝑖 = 𝑧′′)

��𝑥𝑖 , {𝑥 𝑗 } 𝑗 ∈N𝑖

]
.

(2)

Given the treatment vector 𝑇 and the topology 𝐴 of networks,

we can compute the peer exposure 𝑧𝑖 for every unit. Therefore, the

network effects can be fully represented by the peer exposure 𝑧𝑖
and neighbors’ features {𝑥 𝑗 } 𝑗 ∈N𝑖

from the individual view. The

presence of 𝑧𝑖 and {𝑥 𝑗 } 𝑗 ∈N𝑖
in Eq. (2) indicates the major difference

of networked ITE compared to the general independent scenarios

where potential outcomes are not affected by neighbors’ treatments.

To estimate ITE 𝜏 (𝑥𝑖 ) in Eq. (2), we need the two potential out-

comes under different treatments and peer exposures. However,

we can only observe at most one of them from observational data.

For instance, we can only observe the outcomes of a community

w.r.t. one vaccine distribution plan. Therefore, the core of 𝜏 (𝑥𝑖 ) is
to estimate the counterfactual outcome, namely the treatment-peer

exposure-potential outcome tuples that are not observed.

Eq. (2) enables us to further study some interesting causal effects

questions on networks. As in [2], we focus the following three:

• Individual effects: 𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 1, 𝑧𝑖 = 0) −𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 0, 𝑧𝑖 = 0).
It represents unit 𝑖’s own treatment effects, e.g., how much

protection would I get if it was just me and none of my

friends were vaccinated?

• Peer effects: 𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 0, 𝑧𝑖 = 𝑧′) − 𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 0, 𝑧𝑖 = 𝑧′′). It
reflects the effects of treatment inference, e.g., how much

protection would I get if different groups of my friends but

not me were vaccinated?

• total effects: 𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 1, 𝑧𝑖 = 1) − 𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 0, 𝑧𝑖 = 0). It
describes the combined effects of individual treatment and

the network interference, e.g., how much protect would I get

if everyone is vaccinated?

2.3 Causal Identification on Networks
Causal inference is the estimation of causal quantities (e.g., 𝑖’s po-

tential outcome 𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 𝑡, 𝑧𝑖 = 𝑧)). However, only the statistical

quantities (e.g., 𝑖’s observed outcome 𝑌 𝑖
𝑡𝑖 ,𝑧𝑖

) are available in ob-

servational data. To ensure that these statistical quantities can be

used to infer the potential outcome (a.k.a., the causal identification

problem), we make the following essential assumptions.

Assumptions. Wemake two lines of assumptions on networked

data. First, we adapt the standard assumptions on independent data

to the network setting following [7]:

Assumption1: Positivity. The probability of a unit with their neigh-
bors to receive treatment or not is always positive, i.e., ∀𝑥, 0 <

𝑝 (𝑡𝑖 = 1|𝑥𝑖 , {𝑥 𝑗 } 𝑗 ∈N𝑖
) < 1.

Assumption2: Consistency. The potential outcome is same as the

observed outcome under the same treatment assignment and peer

exposure to neighbors , i.e., 𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 𝑡, 𝑧𝑖 = 𝑧) = 𝑌 𝑖
𝑡,𝑧 .

Assumption3: Strong Ignorability. Conditional to the features 𝑥𝑖
and neighbors’ features {𝑥 𝑗 } 𝑗 ∈N𝑖

, potential outcome 𝑌𝑖 |𝑑𝑜 (𝑡𝑖 =

𝑡, 𝑧𝑖 = 𝑧) is independent of treatment 𝑡𝑖 and peer exposure 𝑧𝑖 , i.e.,

𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 𝑡, 𝑧𝑖 = 𝑧) ⊥⊥ 𝑡𝑖 , 𝑧𝑖 |𝑥𝑖 , {𝑥 𝑗 } 𝑗 ∈N𝑖
.

In networked data, the standard SUTVA does not hold because

of the presence of interference. Therefore, to identify the causal

effects, we further assume the interference has the Markov property

(i.e., 1-hop) following [2] (here we set 𝑇𝑁𝑖
= {𝑡 𝑗 } 𝑗 ∈N𝑖

and 𝑇−𝑁𝑖
=

{𝑡 𝑗 } 𝑗 ∈−N𝑖
for simplicity):

Assumption4: Markov. The potential outcome of a unit is only

affected by their own and the immediate neighbors’ treatments,

i.e., ∀ 𝑇𝑁𝑖
,𝑇 ′

𝑁𝑖
, 𝑇−𝑁𝑖

,𝑇 ′
−𝑁𝑖

such that 𝑍 (𝑇𝑁𝑖
) = 𝑍 (𝑇 ′

𝑁𝑖
), we have

𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 𝑡,𝑇𝑁𝑖
,𝑇−𝑁𝑖

) = 𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 𝑡,𝑇 ′
𝑁𝑖
,𝑇 ′

−𝑁𝑖
).

Identification. Given these assumptions, unit 𝑖’s causal effects

𝜏 (𝑥𝑖 ) (Eq. (2)) is identifiable. To avoidmess, we omit the subscription

and denote by 𝑥 = (𝑥𝑖 , {𝑥 𝑗 } 𝑗 ∈N𝑖
) in the following proof:

Proof.

𝜏 (𝑥) = E
[
𝑌 |𝑑𝑜 (𝑡 = 𝑡 ′, 𝑧 = 𝑧′) − 𝑌 |𝑑𝑜 (𝑡 = 𝑡 ′′, 𝑧 = 𝑧′′)

��𝑥 ]
= E

[
𝑌 |𝑑𝑜 (𝑡 = 𝑡 ′, 𝑧 = 𝑧′))

��𝑥 ] − E
[
𝑌 |𝑑𝑜 (𝑡 = 𝑡 ′′, 𝑧 = 𝑧′′)

��𝑥 ]
= E

[
𝑌 |𝑑𝑜 (𝑡 = 𝑡 ′, 𝑧 = 𝑧′)

��𝑡 = 𝑡 ′, 𝑧 = 𝑧′, 𝑥
]

− E
[
𝑌 |𝑑𝑜 (𝑡 = 𝑡 ′′, 𝑧 = 𝑧′′)

��𝑡 = 𝑡 ′′, 𝑧 = 𝑧′′, 𝑥
]

(3)

= E
[
𝑌𝑡 ′,𝑧′

��𝑡 = 𝑡 ′, 𝑧 = 𝑧′, 𝑥
]
− E

[
𝑌𝑡 ′′,𝑧′′

��𝑡 = 𝑡 ′′, 𝑧 = 𝑧′′, 𝑥
]
. (4)
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Eq. (3) holds because of the “Strong Ignorability” assumption that

given 𝑥 = (𝑥𝑖 , {𝑥 𝑗 } 𝑗 ∈N𝑖
), the potential outcome𝑌𝑖 |𝑑𝑜 (𝑡𝑖 = 𝑡, 𝑧𝑖 = 𝑧)

is independent from the treatment 𝑡𝑖 and peer exposure 𝑧𝑖 . Eq. (4)

is true because of the “Consistency” assumption. □

3 METHODOLOGY
In this section, we introduce our proposed method. We first prove

why standard graph machine learning can not estimate causal ef-

fects. Then we breakdown the modules of NetEst in details.

3.1 Why Standard Graph Machine Learning
Fails in Causal Inference?

We show that the failure of standard graph machine learning in

estimating causal effects is due to two distribution mismatches

between their objective functions.

We first introduce several functions with their corresponding

notations. Following [37], we define a one-to-one projection func-

tion 𝜙 : X × 2
X → S, which maps a unit’s own features and

the neighbors’ features into representation space S. We denote

𝑠𝑖 = 𝜙 (𝑥𝑖 , {𝑥 𝑗 } 𝑗 ∈N𝑖
) as unit 𝑖’s representation induced by 𝜙 . We

will introduce the motivation of using this representation projec-

tion function in Sec. 3.2. We further define an estimation function

𝑚 : S × {0, 1} × [0, 1] → Y that estimates the potential outcome

from feature representation 𝑠𝑖 , treatment 𝑡𝑖 and peer exposure 𝑧𝑖 .

For simplicity, we also use a function 𝑓 : X×2X×{0, 1}×[0, 1] → Y
such that 𝑓 (𝑥𝑖 , 𝑡𝑖 , 𝑧𝑖 ) = 𝑚(𝑠𝑖 , 𝑡𝑖 , 𝑧𝑖 ) = 𝑚(𝜙 (𝑥𝑖 , {𝑥 𝑗 } 𝑗 ∈N𝑖

), 𝑡𝑖 , 𝑧𝑖 ) to
denote the whole estimation function starting from the original

features. An estimation objective function needs a loss function,

and we use the square loss in this paper. Now we can compare the

objective functions of standard graph machine learning 𝐽𝑚𝑙 and

causal effects estimation on networks 𝐽𝑐𝑒 . For simplicity, we remove

the subscriptions in the following.

Objective function of machine learning 𝐽𝑚𝑙 . Standard graph

machine learning estimates the potential outcome by optimizing

the estimation loss over the networked observational data. Given

network 𝐺 , estimation function 𝑓 , features 𝑥 , treatment 𝑡 , peer

exposure 𝑧 and outcome 𝑦, as stated in Sec. 2.2, the peer exposure

𝑧 sufficiently represents the network effects induced by network

𝐺 . Therefore, we can denote the observational data by the joint

probability 𝑝 (𝑥, 𝑡, 𝑧,𝑦). Then the objective function of standard

graph machine learning 𝐽𝑚𝑙 is:

𝐽𝑚𝑙 =

ˆ
X

ˆ
T

ˆ
Z

ˆ
Y
(𝑓 (𝑥, 𝑡, 𝑧) − 𝑦)2𝑝 (𝑥, 𝑡, 𝑧,𝑦) 𝑑𝑥 𝑑𝑡 𝑑𝑧 𝑑𝑦 (5)

=

ˆ
X

ˆ
T

ˆ
Z

ˆ
Y
(𝑓 (𝑥, 𝑡, 𝑧) − 𝑦)2𝑝 (𝑥)𝑝 (𝑡 |𝑥)𝑝 (𝑧 |𝑥, 𝑡)𝑝 (𝑦 |𝑥, 𝑡, 𝑧)

𝑑𝑥 𝑑𝑡 𝑑𝑧 𝑑𝑦. (6)

Note that the effects of network is encoded in the graph function 𝑓

and peer exposure 𝑧, so 𝐺 is not explicitly shown in Eq. (5). Eq. (6)

is a chain rule expansion of Eq. (5). We can build a graph machine

learning model 𝑓 (e.g., GNNs) to predict the outcome by optimizing

Eq. (6) on observational data.

Objective function of causal effects estimation 𝐽𝑐𝑒 . Causal
inference is to estimate the causal effects 𝜏 (𝑥) defined in Eq. (2)

on network 𝐺 . Therefore, given estimation model 𝑓 , feature 𝑥 ,

treatment 𝑡 , peer exposure 𝑧 and outcome 𝑦, the objective function

of causal effects estimation 𝐽𝑐𝑒 is the estimation error of causal

effects 𝜏 (𝑥) over all units:
𝐽𝑐𝑒 =

ˆ
X
(𝜏 (𝑥) − 𝜏 (𝑥))2𝑝 (𝑥) 𝑑𝑥 (7)

≤ 8

ˆ
X

ˆ
T

ˆ
Z

ˆ
Y

(
𝑓 (𝑥, 𝑡, 𝑧) − 𝑦

)
2

𝑝 (𝑥)𝑝 (𝑦 |𝑡, 𝑥, 𝑧) 𝑑𝑥 𝑑𝑡 𝑑𝑧 𝑑𝑦,

(8)

where 𝜏 (𝑥) is the estimated causal effects. Eq. (8) is an upper

bound for the objective function 𝐽𝑐𝑒 . Because directly optimizing

the original objective function 𝐽𝑐𝑒 (Eq. (7)) is difficult, this upper

bound can be used as an approximated objective function and the

estimation function 𝑓 can be built by optimizing it on the net-

worked observational data. We use a general format of causal effect

𝜏 (𝑥) = E
[
𝑌1,𝑧′

��𝑡 = 1, 𝑧 = 𝑧′, 𝑥
]
− E

[
𝑌0,0

��𝑡 = 0, 𝑧 = 0, 𝑥
]
follow-

ing [7], which can be further decomposed as:

𝜏 (𝑥) = E
[
𝑌1,𝑧′

��𝑡 = 1, 𝑧 = 𝑧′, 𝑥
]
− E

[
𝑌0,0

��𝑡 = 0, 𝑧 = 0, 𝑥
]

(9)

= E
[
𝑌1,𝑧′

��𝑡 = 1, 𝑧 = 𝑧′, 𝑥
]
− E

[
𝑌0,𝑧′

��𝑡 = 0, 𝑧 = 𝑧′, 𝑥
]

(10)

+ E
[
𝑌0,𝑧′

��𝑡 = 0, 𝑧 = 𝑧′, 𝑥
]
− E

[
𝑌0,0

��𝑡 = 0, 𝑧 = 0, 𝑥
]
. (11)

Eq. (10) captures the individual effects of treatment and Eq. (11)

models the peer effects from network interference. If we set 𝑧 = 1,

Eq. (9) becomes to the total effects. Therefore, Eq. (9) is a general

format that contains all causal effects of interest in Sec. 2.2.

We then show the proof of upper bound in Eq. (8) as follows:

Proof. Given network 𝐺 , model 𝑓 , feature 𝑥 , treatment 𝑡 and

outcome 𝑦, an empirical estimate can be denoted as 𝜏 (𝑥) = 𝑓 (𝑥, 𝑡 =
1, 𝑧) − 𝑓 (𝑥, 𝑡 = 0, 0), which can be similarly decomposed as 𝜏 (𝑥) =
𝑓 (𝑥, 𝑡 = 1, 𝑧) − 𝑓 (𝑥, 𝑡 = 0, 𝑧) + 𝑓 (𝑥, 𝑡 = 0, 𝑧) − 𝑓 (𝑥, 𝑡 = 0, 0). Finally
the objective function of causal effects estimation 𝐽𝑐𝑒

1
is as follows:

𝐽𝑐𝑒 =

ˆ
X
(𝜏 (𝑥) − 𝜏 (𝑥))2𝑝 (𝑥) 𝑑𝑥

=

ˆ
X

[
𝑓 (𝑥, 𝑡 = 1, 𝑧) − 𝑓 (𝑥, 𝑡 = 0, 𝑧)

−
(
E(𝑌1,𝑧

��𝑡 = 1, 𝑧, 𝑥) − E(𝑌0,𝑧
��𝑡 = 0, 𝑧, 𝑥)

)
+ 𝑓 (𝑥, 𝑡 = 0, 𝑧) − 𝑓 (𝑥, 𝑡 = 0, 0)

−
(
E(𝑌1,𝑧

��𝑡 = 0, 𝑧, 𝑥) − E(𝑌0,𝑧
��𝑡 = 0, 0, 𝑥)

) ]
2

𝑝 (𝑥) 𝑑𝑥 (12)

≤ 2

ˆ
X

[
𝑓 (𝑥, 𝑡 = 1, 𝑧) − 𝑓 (𝑥, 𝑡 = 0, 𝑧)

−
(
E(𝑌1,𝑧

��𝑡 = 1, 𝑧, 𝑥) − E(𝑌0,𝑧
��𝑡 = 0, 𝑧, 𝑥)

) ]
2

𝑝 (𝑥) 𝑑𝑥 (13)

+ 2

ˆ
X

[
𝑓 (𝑥, 𝑡 = 0, 𝑧) − 𝑓 (𝑥, 𝑡 = 0, 0)

−
(
E(𝑌0,𝑧

��𝑡 = 0, 𝑧, 𝑥) − E(𝑌0,0
��𝑡 = 0, 0, 𝑥)

) ]
2

𝑝 (𝑥) 𝑑𝑥, (14)

where Eq. (12) is immediate with the definition of 𝜏 (𝑥) and 𝜏 (𝑥).
Eq. (13) and Eq. (14) are the estimation error of individual effects and

peer effects, respectively. The inequality holds because (𝑎 + 𝑏)2 ≤
2(𝑎2 + 𝑏2). For clearness, we conduct the proof of them separately.

We first focus on the individual effects Eq. (13):

𝐸𝑞. (13) = 2

ˆ
X

[
𝑓 (𝑥, 𝑡 = 1, 𝑧) − E(𝑌1,𝑧

��𝑡 = 1, 𝑧, 𝑥)

+
(
E(𝑌0,𝑧

��𝑡 = 0, 𝑧, 𝑥) − 𝑓 (𝑥, 𝑡 = 0, 𝑧)
) ]

2

𝑝 (𝑥) 𝑑𝑥
1
With a square loss, 𝐽𝑐𝑒 is also know as Precision in Estimation of Heterogeneous

Effects (PEHE) [16]
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≤ 4

ˆ
X

[
𝑓 (𝑥, 𝑡 = 1, 𝑧) − E(𝑌1,𝑧

��𝑡 = 1, 𝑧, 𝑥)
]
2

𝑝 (𝑥) 𝑑𝑥

+ 4

ˆ
X

[
𝑓 (𝑥, 𝑡 = 0, 𝑧) − E(𝑌0,𝑧

��𝑡 = 0, 𝑧, 𝑥)
]
2

𝑝 (𝑥) 𝑑𝑥 (15)

≤ 4

ˆ
X

E
[ (
𝑓 (𝑥, 𝑡 = 1, 𝑧) − (𝑌1,𝑧

��𝑡 = 1, 𝑧, 𝑥)
)
2
]
𝑝 (𝑥) 𝑑𝑥

+ 4

ˆ
X

E
[ (
𝑓 (𝑥, 𝑡 = 0, 𝑧) − (𝑌0,𝑧

��𝑡 = 0, 𝑧, 𝑥)
)
2
]
𝑝 (𝑥) 𝑑𝑥

(16)

= 4

ˆ
X

ˆ
Y

(
𝑓 (𝑥, 𝑡 = 1, 𝑧) − 𝑦

)
2

𝑝 (𝑥)𝑝 (𝑦 |𝑡 = 1, 𝑥, 𝑧) 𝑑𝑥 𝑑𝑦

+ 4

ˆ
X

ˆ
Y

(
𝑓 (𝑥, 𝑡 = 0, 𝑧) − 𝑦

)
2

𝑝 (𝑥)𝑝 (𝑦 |𝑡 = 0, 𝑥, 𝑧) 𝑑𝑥 𝑑𝑦

= 4

ˆ
X

ˆ
Y

∑︁
𝑡 ∈{0,1}

(
𝑓 (𝑥, 𝑡, 𝑧) − 𝑦

)
2

𝑝 (𝑥)𝑝 (𝑦 |𝑡, 𝑥, 𝑧) 𝑑𝑥 𝑑𝑦

(17)

≤ 4

ˆ
X

ˆ
T

ˆ
Z

ˆ
Y

(
𝑓 (𝑥, 𝑡, 𝑧) − 𝑦

)
2

𝑝 (𝑥)𝑝 (𝑦 |𝑡, 𝑥, 𝑧) 𝑑𝑥 𝑑𝑡 𝑑𝑧 𝑑𝑦.

(18)

Eq. (16) can be obtained by Jensen’s inequality. Given 𝑇 is binary,

we can unify Eq. (17) to Eq. (18) with integral. With a similarly

technique, we have peer effects Eq. (14):

𝐸𝑞. (14) = 2

ˆ
X

[
𝑓 (𝑥, 𝑡 = 0, 𝑧) − 𝑓 (𝑥, 𝑡 = 0, 0)

−
(
E(𝑌0,𝑧

��𝑡 = 0, 𝑧, 𝑥) − E(𝑌0,0
��𝑡 = 0, 0, 𝑥)

) ]
2

𝑝 (𝑥) 𝑑𝑥

= 2

ˆ
X

[
𝑓 (𝑥, 𝑡 = 0, 𝑧) − E(𝑌0,𝑧

��𝑡 = 0, 𝑧, 𝑥)

+
(
E(𝑌0,0

��𝑡 = 0, 0, 𝑥) − 𝑓 (𝑥, 𝑡 = 0, 0)
) ]

2

𝑝 (𝑥) 𝑑𝑥

≤ 4

ˆ
X

ˆ
T

ˆ
Z

ˆ
Y

(
𝑓 (𝑥, 𝑡, 𝑧) − 𝑦

)
2

𝑝 (𝑥)𝑝 (𝑦 |𝑡, 𝑥, 𝑧) 𝑑𝑥 𝑑𝑡 𝑑𝑧 𝑑𝑦.

(19)

Finally, add the upper bounds of individual effects Eq. (18) and

peer effects Eq. (19), we can obtain an upper bound of the causal

effects estimation error 𝐽𝑐𝑒 (Eq. (7)):

𝐽𝑐𝑒 ≤ 8

ˆ
X

ˆ
T

ˆ
Z

ˆ
Y

(
𝑓 (𝑥, 𝑡, 𝑧) − 𝑦

)
2

𝑝 (𝑥)𝑝 (𝑦 |𝑡, 𝑥, 𝑧) 𝑑𝑥 𝑑𝑡 𝑑𝑧 𝑑𝑦.

(20)

Eq. (20) is Eq. (8), concluding the proof. □

Distribution mismatch. Comparing Eq. (6) and Eq. (8), we find

that standard graph machine learning actually models two more

conditional probabilities 𝑝 (𝑡 |𝑥) and 𝑝 (𝑧 |𝑥, 𝑡) than the objective func-
tion of causal effects estimation. However, 𝑝 (𝑡 |𝑥) and 𝑝 (𝑧 |𝑥, 𝑡) are
typically biased in observational data due to confounders (known as

confounding bias [7, 37]). Consequently, a graph machine learning

model trained on observational data will have biased estimations of

the counterfactual outcomes and causal effects, because 𝑝 (𝑡 |𝑥) and
𝑝 (𝑧 |𝑥, 𝑡) are different in the counterfactual data. These distribution

mismatches lead to the failure of applying standard graph machine

learning models to estimate causal effects on networks.

How to fix it. To apply graphmachine learningmodels for causal

effects estimation on networks, the distribution gaps must be mit-

igated. By comparing Eq. (6) and Eq. (8), we find a sufficient (not

necessary) solution is to force 𝑝 (𝑡 |𝑥) and 𝑝 (𝑧 |𝑥, 𝑡) as uniform dis-

tributions. In other words, causal effects estimation can be reduced

into a multi-task graph machine learning problem on networked

data. Namely, we can use a data-driven graph machine learning

model, with some appropriate and sufficient losses that can force

𝑝 (𝑡 |𝑥) and 𝑝 (𝑧 |𝑥, 𝑡) to be uniformly distributed, to estimate the po-

tential outcome. Although the original data generation can not be

manipulated, we can achieve this goal by learning representations

𝑠𝑖 for every unit 𝑖 . Our model NetEst is motivated by these insights.

For consistency, we still use 𝑝 (𝑡 |𝑥) and 𝑝 (𝑧 |𝑥, 𝑡) instead of 𝑠𝑖 to

denote the distributions to be uniformed throughout this paper.

Note that if the treatments are randomly assigned to units in a

data collection, e.g., randomized controlled trials, these two condi-

tional distribution 𝑝 (𝑡 |𝑥) and 𝑝 (𝑧 |𝑥, 𝑡) actually follow uniform dis-

tributions. In this case, it is safe to use a standard machine learning

model to estimate causal effects. 𝑝 (𝑡 |𝑥) is usually called propensity

score in existing literature [34]. Similarly, we refer to 𝑝 (𝑧 |𝑥, 𝑡) as
the peer exposure score in this paper.

3.2 NetEst
Our model NetEst follows multi-task paradigm that uses graph

machine learning to estimate causal effects on networks. NetEst is

composed of four modules: Encoder, 𝑝 (𝑡 |𝑥) Regularizer, 𝑝 (𝑧 |𝑥, 𝑡)
Regularizer and Estimator. Fig. 2 shows the overview of NetEst.

Encoder. The bias of propensity score 𝑝 (𝑡 |𝑥) and peer exposure

score 𝑝 (𝑧 |𝑥, 𝑡) in observational data is caused by confounders. Tradi-
tional methods like matching [17, 36] can partially alleviate this by

augmenting counterfactual data examples according to propensity

score. However, we argue that a single scalar propensity score is

not enough to capture the high dimensional confounders, especially

on networked data. To capture both confounders from individual

features 𝑥𝑖 and neighbors’ features {𝑥 𝑗 } 𝑗 ∈N𝑖
while be flexible to

later distribution regularization, we propose to learn representation

for every unit on networks. In addition, because only immediate

neighbors are assumed to have influences on a unit (Fig. 1), we just

need to capture the features of 𝑖’s 1-hop neighbors as {𝑥 𝑗 } 𝑗 ∈N𝑖
.

Given this, we use Graph Convolutional Network (GCN) [23] as the

representation function 𝜙 . A GCN layer aggregates the features of

immediate neighbors according to a weight w.r.t. both the a unit’s

and his/her neighbor’s degrees. The aggregated new features is

then transformed to low-dimensional embeddings. Formally, given

a network 𝐺 , let 𝑟
(𝑙)
𝑖

∈ R𝑑 (𝑙)
be the embedding of 𝑖 in the 𝑙-th

layer, where 𝑑 (𝑙) is the embedding dimension of the 𝑙 layer, the

embeddings will be forwarded as:

𝑟
(𝑙+1)
𝑖

= 𝜎
( ∑︁
𝑗 ∈N𝑖

1√︁
𝑑𝑖𝑑 𝑗

𝑟
(𝑙)
𝑗
𝑊 (𝑙) ), (21)

where𝜎 (·) is a non-linear function,𝑑𝑖 and𝑑 𝑗 are the degrees of units
𝑖 and 𝑗 , respectively.𝑊 (𝑙)

is a weight matrix of 𝑙-th layer, and N𝑖

is the neighbors of node 𝑖 . Note that because we need to retain the

features of 𝑖 ,N𝑖 also includes node 𝑖 . Another benefit of using GCN

is that it is applicable to both “inductive” and “transductive” settings,

i.e., GCN couldmake predictions for a new network, or nodes within
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Figure 2: The overall framework of NetEst. NetEst is trained
adversarially. The unit features and network structure are
first encoded into embeddings via GNN. Then, the two dis-
criminators in 𝑝 (𝑡 |𝑥) regularizer and 𝑝 (𝑧 |𝑥, 𝑡) regularizer are
trained to recover treatment 𝑡 and peer exposure 𝑧 from em-
beddings by optimizing the 𝑝 (𝑡 |𝑥) recover loss and 𝑝 (𝑧 |𝑥, 𝑡) re-
cover loss, respectively. With fixed parameters, the two well-
trained discriminators optimize the encoder by the 𝑝 (𝑡 |𝑥) reg-
ularization loss and the 𝑝 (𝑧 |𝑥, 𝑡) regularization loss, together
with the potential outcome loss given by the estimator. Solid
lines are tensor forward propagation and dotted lines are
loss back propagation. Note that the 𝑝 (𝑡 |𝑥) regularization
loss and 𝑝 (𝑧 |𝑥, 𝑡) regularization loss are not used for the two
discriminators although propagated through them.

the same network. This property enables us to estimate both the out-

of-sample and within-sample causal effects. The final GCN layer

produces the embeddings 𝑠𝑖 = 𝜙 (𝑥𝑖 , {𝑥 𝑗 } 𝑗 ∈N𝑖
), which encodes

confounders from both a unit’s own and neighbors’ features.

p(t|x) Regularizer. Based on the embeddings 𝑠𝑖 , we can uniform

the propensity score 𝑝 (𝑡𝑖 |𝑥𝑖 ) for every unit 𝑖 . We propose to use

adversarial training paradigm [8] to achieve this goal. Specifically,

we first train a model (i.e., discriminator) that can recover the treat-

ment 𝑡𝑖 for every unit 𝑖 from the fixed embeddings 𝑠𝑖 as much as

accurately. Formally, let 𝑑𝑡 : S → {0, 1} be the discriminator, it is

trained by the 𝑝 (𝑡 |𝑥) recover loss J𝑟𝑡 as:

J𝑟𝑡 = − 1

𝑉

𝑉∑︁
𝑖=1

(
𝑡𝑖 log𝑑𝑡 (𝑠𝑖 ) + (1 − 𝑡𝑖 ) log(1 − 𝑑𝑡 (𝑠𝑖 )

)
. (22)

Having the well-trained discriminator, we fix it as a “referee” to

update the embeddings such that 𝑝 (𝑡𝑖 |𝑥𝑖 ) is close to a uniform

distribution. Given that treatment 𝑡𝑖 is binary, the probability mass

function of a uniformly distributed 𝑝 (𝑡𝑖 |𝑥𝑖 ) is 𝑝 (𝑡𝑖 = 0|𝑥𝑖 ) = 𝑝 (𝑡𝑖 =
1|𝑥𝑖 ) = 0.5. Therefore, the 𝑝 (𝑡 |𝑥) regularization loss J𝑢𝑡 used to

uniform 𝑝 (𝑡𝑖 |𝑥𝑖 ) is as:

J𝑢𝑡 =
1

𝑉

𝑉∑︁
𝑖=1

(𝑑𝑡 (𝑠𝑖 ) − 0.5)2 . (23)

After many interactions of the “adversaries” between the encoder

𝜙 and discriminator 𝑑𝑡 , the embedding 𝑠𝑖 can finally be updated

such that the discriminator 𝑑𝑡 can not identify whether every unit

receives treatment or not (both have 0.5 probability), i.e., 𝑝 (𝑡 |𝑥) is
forced into a uniform distribution.

p(z|x,t) Regularizer. Similar to the 𝑝 (𝑡 |𝑥) Regularizer, we use
another adversarial training paradigm to make the peer exposure

score 𝑝 (𝑧𝑖 |𝑥𝑖 , 𝑡𝑖 ) uniformed for every unit 𝑖 . A new discriminator

𝑑𝑧 : S × {0, 1} → [0, 1] is first trained to recover the peer exposure
𝑧𝑖 given embeddings 𝑠𝑖 and treatment 𝑡𝑖 via the following 𝑝 (𝑧 |𝑥, 𝑡)
recover loss J𝑟𝑧 :

J𝑟𝑧 =
1

𝑉

𝑉∑︁
𝑖=1

(𝑑𝑧 (𝑠𝑖 , 𝑡𝑖 ) − 𝑧𝑖 )2 . (24)

Then, we fix the discriminator 𝑑𝑧 to update embeddings 𝑠𝑖 to force

the peer exposure score 𝑝 (𝑧𝑖 |𝑥𝑖 , 𝑡𝑖 ) into uniform distribution. Recall

that 𝑧𝑖 is defined as ratio of treated neighbors of 𝑖 , and therefore is a

continuous variable between 0 and 1. To approximate a continuous

uniform distribution over range [0, 1], we propose to uniformly

sample a different value 𝑐𝑠
𝑖
~[0, 1] for every unit 𝑖 in every training

iteration 𝑠 , that is to say, every 𝑖 has a varying label in every iteration.

In this case, the predicted 𝑧𝑖 = 𝑑𝑧 (𝑠𝑖 , 𝑡𝑖 ) can be compared with

any value from [0, 1] with equal probability for multiple times.

Hence, the randomly generated labels can mimic a continuous

uniform distribution. Formally, the 𝑝 (𝑧 |𝑥, 𝑡) regularization loss 𝐽𝑢𝑧
at iteration 𝑠 is:

J𝑢𝑧 =
1

𝑉

𝑉∑︁
𝑖=1

(𝑑𝑧 (𝑠𝑖 , 𝑡𝑖 ) − 𝑐𝑠𝑖 )
2 . (25)

Note that as shown in Fig. 2, the 𝑝 (𝑡 |𝑥) regularization loss J𝑢𝑡 and
𝑝 (𝑧 |𝑥, 𝑡) regularization loss J𝑢𝑧 are only used to optimize the en-

coder, though they propagate gradients to their discriminators. We

parameterize the two discriminators 𝑑𝑡 , 𝑑𝑧 with neural networks.

Estimator. Another objective is to minimize the observed out-

comes estimation errors. We simply use neural networks as the

estimator, which takes embeddings 𝑠𝑖 , treatment 𝑡𝑖 and peer expo-

sure 𝑧𝑖 as inputs to estimate the potential outcomes. Formally, for

the estimator𝑚 : 𝑆 × {0, 1} × [0, 1] → Y, we have the potential
outcome loss. J𝑚 :

J𝑚 =
1

𝑉

𝑉∑︁
𝑖=1

(𝑚(𝑠𝑖 , 𝑡𝑖 , 𝑧𝑖 ) − 𝑌 𝑖
𝑡𝑖 ,𝑧𝑖

)2 . (26)

Optimization. Algorithm. 1 shows the overall optimization pro-

cedure. NetEst optimizes the embedding 𝑠𝑖 adversarially: (1) it first

well trains the discriminators 𝑑𝑡 and 𝑑𝑧 by minimizing the 𝑝 (𝑡 |𝑥)
recover loss J𝑟𝑡 and 𝑝 (𝑧 |𝑥, 𝑡) recover loss J𝑟𝑧 , (2) then updates the

estimator𝑚 with J𝑚 and optimizes the encoder with a multi-task

objective J𝑚 + 𝛼J𝑢𝑡 + 𝛾J𝑢𝑧 , where 𝛼 and 𝛾 are coefficients that

control the strengths of 𝑝 (𝑡 |𝑥) and 𝑝 (𝑧 |𝑥, 𝑡) regularization.

4 EXPERIMENTS
In this section, we evaluate the effectiveness of NetEst. We first

set up the experiments and then report the results compared to

baseline models. We further study why and when NetEst works.
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Figure 3: Counterfactual estimation errors 𝜖𝑀𝑆𝐸 v.s. percentages of units whose treatments are flipped (denoted as “flip rate”).
From left: BlogCatalog “within-sample”, BlogCatalog “out-of-sample”, Flickr “within-sample”, Flickr “out-of-sample”.

Algorithm 1 The optimization of NetEstimator

Input: Network 𝐺 = ⟨𝐴,𝑋 ⟩; the observed treatment 𝑡𝑖 , peer

exposure 𝑧𝑖 and outcome 𝑌 𝑖
𝑡𝑖 ,𝑧𝑖

; coefficients 𝛼 and 𝛾 .

Output: Encoder 𝜙 , 𝑝 (𝑡 |𝑥) Regularizer 𝑑𝑡 , 𝑝 (𝑧 |𝑥, 𝑡) Regularizer
𝑑𝑧 and Estimator𝑚.

Initialize 𝜙 , 𝑑𝑡 , 𝑑𝑧 and𝑚;

for w = 1, 2, ..., W do ⊲ Train model for W epochs

for o = 1, 2, ..., O do ⊲ Train 𝑑𝑡 for O steps

Compute J𝑟𝑡 ;
Do one step of gradient descent for 𝑑𝑡 :

𝜃
(𝑜+1)
𝑑𝑡

= 𝜃
(𝑜)
𝑑𝑡

− 𝜂∇𝜃𝑑𝑡 J𝑟𝑡 ; ⊲ 𝜂 is learning rate

for u = 1, 2, ..., U do ⊲ Train 𝑑𝑧 for U steps

Compute J𝑟𝑧 ;
Do one step of gradient descent for 𝑑𝑧 :

𝜃
(𝑢+1)
𝑑𝑧

= 𝜃
(𝑢)
𝑑𝑧

− 𝜂∇𝜃𝑑𝑧 J𝑟𝑧 ;

for s = 1, 2, ..., S do ⊲ Train 𝜙 and𝑚 for S steps

Sample 𝑐𝑠
𝑖
~[0, 1] for every 𝑖;

Compute J𝑚 , J𝑢𝑡 , J𝑢𝑧 ;
Do one step of gradient descent for 𝜙 and𝑚:

𝜃
(𝑠+1)
𝜙

= 𝜃
(𝑠)
𝜙

− 𝜂∇𝜃𝜙 (J𝑚 + 𝛼J𝑢𝑡 + 𝛾J𝑢𝑧 );

𝜃
(𝑠+1)
𝑚 = 𝜃

(𝑠)
𝑚 − 𝜂∇𝜃𝑚J𝑚 ;

Return 𝜙 , 𝑑𝑡 ,𝑑𝑧 and𝑚.

4.1 Experiments Setup
Datasets. For every unit 𝑖 , only one treatment 𝑡𝑖 , peer exposure 𝑧𝑖
and outcome 𝑌 𝑖

𝑡𝑖 ,𝑧𝑖
can be observed(i.e., factual outcome). We can

never know the groundtruth counterfactual outcome, and thus it

is impossible to evaluate causal effects estimation directly. There-

fore, following [14, 25, 39], we use semi-synthetic datasets, i.e., the

networks (features, topology) are real but treatments and potential

outcomes are simulated. We use two real-world social networks

BlogCatalog and Flickr [14, 25]. In both datasets, a unit (node) is

a user and an edge indicates their social relationship. Because the

raw features of units are high-dimensional and very sparse, fol-

lowing [13, 25], we use LDA [5] to reduce the dimension to 10.

“Out-of-sample” estimation requires we have a new network with-

out observed outcomes, therefore, we use METIS [21] to partition

the original network into three sub-networks as train/valid/test

respectively. We evaluate the “within-sample” estimation on train

networks and “out-of-sample” on the test network. Treatments and

potential outcomes are simulated according to Fig. 1.

Treatments simulation. The treatment 𝑡𝑖 is affected by 𝑖’s fea-

tures 𝑥𝑖 and 𝑖’s neighbors’ features {𝑥 𝑗 } 𝑗 ∈N𝑖
. Let𝑤𝑋1

be a randomly

generated weight vector, then unit 𝑖’s “propensity to treatment” 𝑝𝑡𝑖
is defined as 𝑝𝑡𝑖 = 𝜎 (𝑤𝑋1

· 𝑥𝑖 ), where 𝜎 (·) is the sigmoid function.

𝑤𝑋1
mimics the causal mechanism of the confounders to treatments.

We denote by 𝑝𝑡𝑁𝑖
the average of all 𝑖’s neighbors’ propensities,

and denote by 𝑡𝑝𝑡𝑖 = 𝛽𝑥 ∗ 𝑝𝑡𝑖 + 𝛽𝑛 ∗ 𝑝𝑡𝑁𝑖
the total propensity to

treatment of 𝑖 . Then the treatment 𝑡𝑖 is generated following:

𝑡𝑖 =

{
1 if 𝑡𝑝𝑡𝑖 > 𝑡𝑝𝑡

0 else

, (27)

where 𝑡𝑝𝑡 is the average of all 𝑡𝑝𝑡𝑖 . We set both 𝛽𝑥 and 𝛽𝑛 as 1.

Given 𝑡𝑖 and the network topology A, the peer exposure 𝑧𝑖—the

ratio of treated neighbors of 𝑖—can then be easily calculated.

Potential outcomes simulation. The potential outcome𝑌𝑖 |𝑑𝑜 (𝑡𝑖 , 𝑧𝑖 )
of 𝑖 is affected by four factors: 𝑖’s treatment 𝑡𝑖 , peer exposure 𝑧𝑖 , 𝑖’s

features 𝑥𝑖 and 𝑖’s neighbors’ features {𝑥 𝑗 } 𝑗 ∈N𝑖
. We define “propen-

sity to outcome” 𝑝𝑜𝑖 = 𝜎 (𝑤𝑋2
· 𝑥𝑖 ), where 𝑤𝑋2

is randomly gen-

erated to represent the causal mechanism of features to potential

outcomes. Similarly, We let 𝑝𝑜𝑁𝑖
be the average of all 𝑖’s neighbors’

propensities. Then the potential outcome is simulated by:

𝑌𝑖 |𝑑𝑜 (𝑡𝑖 , 𝑧𝑖 ) = 𝛽𝑡 · 𝑡𝑖 + 𝛽𝑧 · 𝑧𝑖 + 𝛽𝑝 · 𝑝𝑜𝑖 + 𝛽𝑜 · 𝑝𝑜𝑁𝑖
+ 𝜖, (28)

where 𝜖 is a noise term. The parameters 𝛽𝑡 , 𝛽𝑧 , 𝛽𝑝 and 𝛽𝑜 are

strengths to potential outcome of treatment, peer exposure, features,

features of neighbors, respectively. We set 𝛽𝑡 , 𝛽𝑧 , 𝛽𝑝 as 1 and 𝛽𝑜
as 0.5. following the intuition that a unit’s own features should

have stronger effects than their neighbors. We use fixed parameters

across networks because the causal mechanism is invariant.

Metrics.We consider two metrics: Mean Squared Error (𝜖𝑀𝑆𝐸 =
1

𝑉

∑𝑉
𝑖=1 (𝑦𝑖 −𝑦𝑖 )

2
) for counterfactual estimation where 𝑦𝑖 and 𝑦𝑖 are

the estimated and groundtruth potential outcomes, respectively, and

(𝜖𝑃𝐸𝐻𝐸 =

√︃
1

𝑉

∑𝑉
𝑖=1 (𝜏 (𝑋 ) − 𝜏 (𝑋 ))2) for causal effects estimation,

where 𝜏 (𝑋 ) is the estimation and 𝜏 (𝑋 ) is groundtruth. Lower is
better for both metrics.

Baselines. NetEst is compared with six baselines and three

variants. CFR [37]: State-of-the-art model for causal effects esti-

mation on independent data, which is optimized by the estimating
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Table 2: Results of causal effects estimation. The PEHE error 𝜖𝑃𝐸𝐻𝐸 (precision of estimating heterogeneous effects) is reported.
The best is boldface while the second best is underlined. “N/A” means the model is not applicable for the peer effects.

Data (Setting) effects TARNET CFR ND TARNET(+N) CFR(+N) ND(+N) NetEst_U NetEst_I NetEst_P NetEst

BC

Individual 0.1140±0.0455 0.1292±0.0931 0.1442±0.0942 0.1315±0.0411 0.1121±0.0546 0.0969±0.0422 0.1207±0.0345 0.1088±0.0452 0.1139±0.0437 0.1186±0.0542

(Within-sample)

Peer N/A N/A N/A 0.4850±0.0104 0.3346±0.0439 0.4680±0.0321 0.1245±0.0491 0.0632±0.0188 0.0685±0.0176 0.0647±0.0188

Total 0.9952±0.0811 0.8708±0.0931 0.8558±0.0941 0.9027±0.0852 0.5566±0.1373 0.7472±0.1135 0.4101±0.0358 0.2268±0.0970 0.2483±0.0791 0.2214±0.1000

BC

Individual 0.1169±0.0457 0.1292±0.0931 0.1444±0.0944 0.1303±0.0406 0.1142±0.0540 0.1014±0.0443 0.1199±0.0399 0.1040±0.0457 0.1114±0.0469 0.1159±0.0516

(Out-of-sample)

Peer N/A N/A N/A 0.4830±0.0110 0.3347±0.0440 0.4682±0.0323 0.1243±0.0498 0.0630±0.0198 0.0679±0.0182 0.0610±0.0181

Total 0.9903±0.0866 0.8707±0.0931 0.8557±0.0943 0.8952±0.0892 0.5555±0.1360 0.0.7438±0.1145 0.4051±0.0422 0.2205±0.1017 0.2436±0.0823 0.2166±0.1043

Flickr

Individual 0.1029±0.0231 0.0760±0.0445 0.0926±0.0470 0.1195±0.0434 0.0613±0.0306 0.1483±0.0678 0.1855±0.0556 0.1529±0.0588 0.1632±0.0585 0.1513±0.0637

(Within-sample)

Peer N/A N/A N/A 0.4327±0.0177 0.2967±0.0370 0.4977±0.0066 0.0911±0.0188 0.0612±0.0298 0.0759±0.0184 0.0734±0.0284

Total 1.0144±0.0620 0.9470±0.0704 0.9317±0.0711 0.8661±0.0701 0.5212±0.0593 0.8331±0.0755 0.3715±0.0634 0.2996±0.0583 0.3107±0.0669 0.3139±0.0545

Flickr

Individual 0.1111±0.0215 0.0760±0.0445 0.0938±0.0467 0.1129±0.0376 0.0604±0.0297 0.1346±0.0568 0.1769±0.0543 0.1464±0.0592 0.1546±0.0627 0.1392±0.0646

(Out-of-sample)

Peer N/A N/A N/A 0.4220±0.0204 0.2967±.0370 0.4876±0.0134 0.0827±0.0209 0.0544±0.0257 0.0662±0.0141 0.0568±0.0243

Total 0.9895±0.0648 0.9470±0.0704 0.9253±0.0621 0.8243±0.0654 0.5220±0.0586 0.7887±0.0822 0.3435±0.0647 0.2783±0.0572 0.2826±0.0586 0.2732±0.0571

observed outcomes estimation, and a so-called Integral Probability

Metrics(IPM) that forces treated and control group to be closer. We

use the Wasserstein distance implementation of IPM. TARNet [37]:
a variant of CFR without IPM. NetDeconf [14]: extension of CFR

to networked data, which uses GNN for encoding confounders,

and Wasserstein distance for representations balancing. CFR+(N),
TARNet+(N), NetDeconf+(N): because the above three models do

not consider interference, we add the peer exposure (+N) as extra

input to them to evaluate their ability under network interference.

NetEst_U, NetEst_I, NetEst_P: variants of NetEst without any reg-
ularizers (𝛼 = 𝛾 = 0), only with 𝑝 (𝑡 |𝑥) regularizer (𝛼 = 0.5, 𝛾 = 0),

and only with 𝑝 (𝑧 |𝑥, 𝑡) regularizer (𝛼 = 0, 𝛾 = 0.5), respectively.

Implementation details. We build our model as follow. We use

1 graph convolution layer as encoder
2
. We use 3 fully-connected lay-

ers for estimator and the two discriminators. All hidden embedding

size is 32. Coefficient 𝛼 and 𝛾 are set as 0.5. For hyperparameters,

we use full-batch training and set the learning rate to 0.001 for all

modules. All parameters are randomly initialized and updated by

the Adam optimizer [22]. We run every task for five times (includ-

ing simulation) and reported the average and 1-standard deviation.

The experiment environment is an AWS g4dn.4xlarge instance.

4.2 Results Comparison
As stated in Sec. 2.2, we estimate the counterfactual outcomes

and predict three interesting causal effects: individual effects, peer

effects and total effects. For counterfactual estimation, a counter-

factual treatments assignment 𝑇 is over the entire network, we

therefore simulate the counterfactual outcomes by flipping the

treatments of randomly sampled subgroups of units. We try flip

rates in {0.25, 0.5, 0.75, 1} and report the counterfactual estimation

errors in Fig. 3. In general, NetEst consistently outperform all base-

lines in “within-sample” and “out-of-sample” estimations on both

datasets, suggesting the effectiveness of our model in handling the

confounding bias. We notice all models’ errors increase with a

2
Note 1 layer is consistent with the Markov assumption of network effects in Sec. 2.3.

More layers may be necessary if network effects are beyond the 1-hop neighbors

larger flip rate, but NetEst is still robust, showing a much lower

error even we flip the treatments of 100% units. NetEst and its vari-

ants exhibit a similar superiority against baselines in predicting

the three causal effects (Table. 2). We observe that NetEst works

generally better than other models in estimating the total effects.

This empirically demonstrates our conclusion in Sec. 3.1 forcing

the 𝑝 (𝑡 |𝑥) and 𝑝 (𝑧 |𝑥, 𝑡) into uniform distributions is essential for

causal effects estimation on networks, which is derived by study-

ing the objective function of causal effects. We note that the two

variants NetEst_U and NetEst_I works better under some settings.

We speculate that forcing 𝑝 (𝑡 |𝑥) into uniform distribution will also

make 𝑝 (𝑧 |𝑥, 𝑡) close to be uniformed and vice versa, since both

regularizers basically enforce the embeddings to be close with each

other (validated later in Fig. 5).
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Figure 4: Errors of causal model NetEst and graph machine
learning model (GCN) on three tasks: prediction, counterfac-
tual estimation and causal effects estimation.

4.3 Why Does NetEst Work?
Motivation. We motivate NetEst by modifying the objective func-

tions of graphmachine learningmodels for causal effects estimation.

To verify this modification, we compare NetEst with graph machine

learning model GCN in Fig. 4. Causal model NetEst has worse per-

formance on general prediction task compared to GCN but better

on causal estimation tasks. It shows, as intended, forcing 𝑝 (𝑡 |𝑥)
and 𝑝 (𝑧 |𝑥, 𝑡) into uniform distributions sacrifices the general pre-

diction performance but alleviates the distribution mismatches and

therefore favors beneficial for causal problem.
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p(t |x) p(z |x, t)
Figure 5: T-SNE projections of learned units’ embeddings 𝑠𝑖 . Left: without (𝛼=0) and with (𝛼=0.5) the regularizer for 𝑝 (𝑡 |𝑥). A red
point is a unit who was treated while a blue point means a controlled unit. Right: without (𝛾=0) and with (𝛾=0.5) the regularizer
for 𝑝 (𝑧 |𝑥, 𝑡). Units are colored by their observed peer exposures 𝑧. Red means a higher 𝑧, i.e., ratio of treated neighbors in this
paper, while blue indicates a lower 𝑧. We use 3D projection for 𝑝 (𝑧 |𝑥, 𝑡) as 𝑧 is continuous.

Visualized interpretation. The uniform regularizers are con-

ducted on the embeddings. We further visualize the learned em-

beddings 𝑠𝑖 to understand why adversarial training works. We use

t-SNE [38] to project units’ embeddings 𝑠𝑖 into 2-dimension colored

by their binary treatments 𝑡𝑖 and 3-dimension colored by their peer

exposures 𝑧𝑖 in for clearness in Fig. 5. With the distribution regular-

izers, the units points are highly overlapped on both figures. This

overlapping means that for a given unit 𝑠𝑖 , the discriminators 𝑑𝑡 ,

𝑑𝑧 can not recover the treatment 𝑡 and peer exposure 𝑧, suggesting

𝑡 and 𝑧 are uniformly distributed given 𝑠𝑖 .

4.4 When Does NetEst Work?
The potential outcome scale varies a lot in observational data. We

stratify units by their potential outcomes and break down the coun-

terfactual estimation errors in Table. 3. We find NetEst works much

better onmoderate samples than extreme ones.We speculate NetEst

can not alleviate the weakness of machine learning models on ex-

treme data just with the proposed distribution regularizers. Under-

standing and solving this challenge is an interesting future direction.

Table 3: Counterfactual estimation errors according to po-
tential outcome percentile. MSE error 𝜖𝑀𝑆𝐸 is reported.

Potential outcome strata BC Flickr

0-10% 0.3008±0.1529 0.2642±0.0784

10%-50% 0.1192±0.0375 0.0966±0.0143

50%-90% 0.0614±0.0235 0.0536±0.0060

90%-100% 0.2423±0.1756 0.4767±0.1368

5 RELATEDWORK
Causal inference on independent data. Traditional causal infer-
ence is on independent data, where the Stable Unit Treatment Val-

ues Assumption (SUTVA) [35] guarantees potential outcome is not

affected by the treatments of others. To alleviate the confounding

bias in observational data, many existing works mimic the random

treatment assignment from the observational data. A predominate

approach is matching, which finds a similar peer for every unit

from the opposite group [36]. Propensity score [17], describing the

treated probability given features, is usually used as the criterion

for matching. Another method is inverse probability of treatment

weighting (IPTW) [3], which balances the data by re-weighting

units based on their propensity scores. Recent works introduce

representation learning to causal inference. [19, 20, 24, 37, 43, 44]

learn embeddings for each unit via neural networks. The learned

embeddings could predict the potential outcomes and are forced

to be balanced between treated and control groups. Different from

these methods on independent data, our focus is on networked

scenarios, which has many practical use cases.

Causal inference on Networked Data. Unlike independent

data, the units on networks are implicitly correlated, which violates

the fundamental SUTVA assumption. Units on networks tend to be-

have similarlywith their close neighbors (i.e., homophily [28]). They

also affect each other (i.e., interference [18]). The dependencies be-

tween units on networks provide more complicated confounders,

challenging the causal effects estimation. To infer networked causal

effects from observational data, many works extend the methods

on independent data into networks. [2] extends the back-door ad-

justment [33] into networks according to the causal graph built on

networks. [7] introduces a summary variable of neighbors’ treat-

ments. They then extend the propensity score into networks to

infer treatment effects. [26] applies Hilbert-Schmidt Independence

Criterion (HSIC) [10] on networks to infer the treatments effects un-

der interference. Our work follows the networked causal inference

settings in [2, 7], but proposes an alternative method that adapts

graph machine learning models for the causal effects estimation

from the perspective of aligning their objective functions.

6 CONCLUSION
This paper studies causal effects estimation on networked data.

We theoretically show the objective function of standard graph

machine learning has two distribution mismatches against causal

effects estimation, motivating our model NetEst that mitigates the

distribution gaps via representation learning. Future works could

study finding out the optimal treatment strategy, such as vaccine

distribution plan, on networks based on estimated causal effects.
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